Структурированные типы данных строки. Базовые конструкции алгоритмов

Структурированные типы данных определяют упорядоченную совокупность скалярных переменных и характеризуются типом своих компонентов.

Структурированные типы данных в отличие от простых задают множества сложных значений с одним общим именем. Можно сказать, что структурные типы определяют некоторый способ образования новых типов из уже имеющихся.

Существует несколько методов структурирования, каждый из которых отличается способом обращения к отдельным компонентам и, следовательно, способом обозначения компонентов, входящих в структурные данные. По способу организации и типу компонентов в сложных типах данных выделяют следующие разновидности:

§ регулярный тип (массивы);

§ комбинированный тип (записи);

§ файловый тип (файлы);

§ множественный тип (множества);

§ строковый тип (строки);

§ в языке Турбо Паскаль версии 6.0 и старше введен объектный тип (объекты).


26)Оператор goto - это оператор безусловного перехода. Он применяется в том случае, когда после выполнения некоторого оператора нужно перейти не к следующему за ним оператору, а в какую-то другую часть программы, помеченную специальной меткой. Эта метка обязательно должна быть объявлена в разделе описания меток данной программы. Метка может быть как числовой, например: goto 12, так и содержать буквенные символы, например: goto raschets.

Областью действия оператора goto является только тот блок, куда было передано управление. Передача управления в иной блок невозможна, так как указанная метка остается неизменной в программе.

Пустой оператор не выполняет никаких действий и не содержит никаких символов. Обычно такой оператор используется для организации перехода к концу локального или глобального блока. Особенно в тех случаях, когда необходимо пропустить несколько операторов, но не выходить из блока. Для этого перед зарезевированным словом «end» ставится метка и за ней обязательно двоеточие. Например:

goto Metka; (Переход в конец блока)

Metka: (Пустой оператор помечен меткой)

ввод - Read(<список_ввода>) и ReadLn(<список_ввода>).

Первая из этих команд считывает все предложенные ей данные, оставляя курсор в конце последней строки ввода, а вторая - сразу после окончания ввода переводит курсор на начало следующей строки. В остальном же их действия полностью совпадают.

Список ввода - это последовательность имён переменных, разделённых запятыми. Например, при помощи команды

ReadLn(k, x, c, s); {k: Byte; x: Real; c: Char; s: String}

программа может получить с клавиатуры данные сразу для четырёх переменных, относящихся к различным типам данных.

Вводимые значения необходимо разделять пробелами, а завершать ввод - нажатием клавиши Enter. Ввод данных заканчивается в тот момент, когда последняя переменная из списка ввода получила своё значение. Следовательно, вводя данные при помощи приведённой выше команды, вы можете нажать Enter четыре раза - после каждой из вводимых переменных, - либо же только один раз, предварительно введя все четыре переменные в одну строчку (обязательно нужно разделить их пробелами).

Типы вводимых значений должны совпадать с типами указанных переменных, иначе возникает ошибка. Поэтому нужно внимательно следить за правильностью вводимых данных.

Вообще, вводить с клавиатуры можно только данные базовых типов (за исключением логического). Если же программе всё-таки необходимо получить с консоли значение для Boolean-величины, придётся действовать более хитро: вводить оговоренный символ, а уже на его основе присваивать логической переменной соответствующее значение. Например:

WriteLn("Согласны ли Вы с этим утверждением? y - да, n - нет");

ReadLn(c); {c: Char}

else WriteLn("Ошибка!");

until (c = "n") or (c = "y");

Второе исключение: строки, хотя они и не являются базовым типом, вводить тоже разрешается. Признаком окончания ввода строки является нажатие клавиши Enter, поэтому все следующие за нею переменные необходимо вводить с новой строчки.

Вывод - Для того, чтобы вывести на экран какое-либо сообщение, используют процедуру Write(<список_вывода>) или WriteLn(<список_вывода>).

Первая из них, напечатав на экране всё, о чем ее просили, оставит курсор в конце выведенной строки, а вторая переведёт его в начало следующей строчки.

Формат - Если для вывода информации воспользоваться командой, приведённой в конце предыдущего пункта, то выводимые символы окажутся «слепленными». Чтобы этого не случилось, нужно либо позаботиться о пробелах между выводимыми переменными:

WriteLn(a, " ", b, " ", c);

либо задать для всех (или хотя бы для некоторых) переменных формат вывода:

WriteLn(a: 5, b, c: 20: 5);

Первое число после знака «:» обозначает количество позиций, выделяемых под всю переменную, а второе - под дробную часть числа. Десятичная точка тоже считается отдельным символом.

Если число длиннее, чем отведённое под него пространство, количество позиций будет автоматически увеличено. Если же выводимое число короче заданного формата, то спереди к нему припишутся несколько пробелов. Таким образом можно производить вывод красивыми ровными столбиками, а также следить за тем, чтобы переменные не сливались.

Например, если a = 25, b = "x", а c = 10.5, то после выполнения команды WriteLn(a: 5, " ", b, c: 10: 5) на экране или в файле будет записано следующее (подчерки в данном случае служат лишь для визуализации пробелов):

25_x_ _10.50000

Особенно важен формат при выводе вещественных переменных. К примеру, если не указать формат, то число 10.5 будет выведено как 1.0500000000Е+0001. Такой формат называется записью с плавающей точкой.

Если же задать только общую длину вещественного числа, не указывая длину дробной части, то оно будет занимать на экране заданное количество символов (в случае надобности, спереди будет добавлено соответствующее количество пробелов), но при этом останется в формате плавающей точки. Минимальной длиной для вывода вещественных чисел является 10 (при формате _x.xE+yyyy). Первая позиция зарезервирована под знак «-».

27) A лгоритм линейной структуры (линейный алгоритм) – алгоритм, в котором блоки выполняются последовательно друг за другом. Такой порядок выполнения блоков называется естественным .

Пример. Вычислить

Решение : Схема алгоритма линейной структуры имеет вид (рис.1.)

28)Простой и составной операторы

Оператор в программе – это единое и неделимое предложение, выполняющее какое-либо действие. Типичный простой оператор – это оператор присваивания. Другим примером может служить вызов какой-либо процедуры в программе. Важно, что под любым оператором подразумевается действие (присваивание, вызов подпрограммы и т.п.). Блоки описания переменных, констант, типов и меток не являются в этом смысле операторами.

Два последовательных оператора обязательно должны разделяться точкой с запятой “;”.

Примеры простых операторов:

a:= 10; b:= a*5; Write(a, b);

Если какое-то действие мыслится как единое, но реализуется несколькими различными операторами, то последние могут быть представлены как составной оператор.

Составной оператор – это последовательность операторов, перед которой стоит слово BEGIN, а после – END. Слова BEGIN и END часто именую операторными скобками.

Пример составного оператора:

BEGIN
a:= 10;
b:+ a*5;
Write(a, b)
END ;

Составной оператор может содержать любое количество простых операторов. Он допускает вложенность, т.е. может содержать внутри себя другие составные операторы.

ВАЖНО: Составной оператор применяется в тех случаях, когда синтаксис языка Паскаль допускает использование только одного оператора, в то время как алгоритм требует задания некоторой последовательности действий. В Паскале все управляющие структуры (операторы) не различают простой и составной оператор: там где стоит простой оператор, можно поставить и составной.


30. цикл с постусловием: Циклы применяются, когда нужно выполнить одни и те же команды несколько раз.

Рассмотрим общий вид цикла с постусловием:

[тело цикла];

Until < логическое выражение>;

Плюсы у данного цикла те же самые, что и у цикла с предусловием.

Стоит правильно понимать суть этого цикла: «Повторять команды, приведенные в теле цикла до тех пор, пока данное условие не будет выполнено (логическое выражение не будет истинным)».

цикл с предусловием: Циклы применяются, когда нужно выполнить одни и те же команды несколько раз.

Рассмотрим общий вид цикла с предусловием:

While <логическое выражение> do [оператор][;]

[тело цикла];

Главными плюсами данного цикла являются:

1. Индекс можно изменять не только с шагом плюс или минус один, а на любую величину , даже не целого типа (конечно в пределах разумной меры), в отличие от цикла с параметром.

2. В данном цикле можно реализовать повторение команд до определенного условия – до логического выражения .

Стоит правильно понимать суть этого цикла: «Пока данное условие выполняется (или логическое выражение не ложь) повторяем команды, написанные в теле цикла, иначе завершаем цикл».

Через цикл с предусловием можно реализовать цикл с параметром, за одним «но» – на практике лучше использовать «for».


Похожая информация.


Простые типы данных

Типы данных

Общая характеристика реляционной модели данных

Основы реляционной модели данных были впервые изложены в статье Е.Кодда в 1970 г. Эта работа послужила стимулом для большого количества статей и книг, в которых реляционная модель получила дальнейшее развитие. Наиболее распространенная трактовка реляционной модели данных принадлежит К.Дейту . Согласно Дейту, реляционная модель состоит из трех частей:

  • Структурной части.
  • Целостной части.
  • Манипуляционной части.

Структурная часть описывает, какие объекты рассматриваются реляционной моделью. Постулируется, что единственной структурой данных, используемой в реляционной модели, являются нормализованные n-арные отношения.

Целостная часть описывает ограничения специального вида, которые должны выполняться для любых отношений в любых реляционных базах данных. Это целостность сущностей и целостность внешних ключей .

Манипуляционная часть описывает два эквивалентных способа манипулирования реляционными данными - реляционную алгебру и реляционное исчисление .

В данной главе рассматривается структурная часть реляционной модели.

Любые данные, используемые в программировании, имеют свои типы данных.

Важно! Реляционная модель требует, чтобы типы используемых данных были простыми .

Для уточнения этого утверждения рассмотрим, какие вообще типы данных обычно рассматриваются в программировании. Как правило, типы данных делятся на три группы:

  • Простые типы данных.
  • Структурированные типы данных.
  • Ссылочные типы данных.

Простые, или атомарные, типы данных не обладают внутренней структурой. Данные такого типа называют скалярами . К простым типам данных относятся следующие типы:

  • Логический.
  • Строковый.
  • Численный.

Различные языки программирования могут расширять и уточнять этот список, добавляя такие типы как:

  • Целый.
  • Вещественный.
  • Дата.
  • Время.
  • Денежный.
  • Перечислимый.
  • Интервальный.
  • И т.д.…

Конечно, понятие атомарности довольно относительно. Так, строковый тип данных можно рассматривать как одномерный массив символов, а целый тип данных - как набор битов. Важно лишь то, что при переходе на такой низкий уровень теряется семантика (смысл) данных . Если строку, выражающую, например, фамилию сотрудника, разложить в массив символов, то при этом теряется смысл такой строки как единого целого.

Структурированные типы данных предназначены для задания сложных структур данных. Структурированные типы данных конструируются из составляющих элементов, называемых компонентами, которые, в свою очередь, могут обладать структурой. В качестве структурированных типов данных можно привести следующие типы данных:

  • Массивы
  • Записи (Структуры)

С математической точки зрения массив представляет собой функцию с конечной областью определения. Например, рассмотрим конечное множество натуральных чисел

называемое множеством индексов. Отображение

из множества во множество вещественных чисел задает одномерный вещественный массив. Значение этой функции для некоторого значения индекса называется элементом массива, соответствующим . Аналогично можно задавать многомерные массивы.

Запись (или структура) представляет собой кортеж из некоторого декартового произведения множеств. Действительно, запись представляет собой именованный упорядоченный набор элементов , каждый из которых принадлежит типу . Таким образом, запись есть элемент множества . Объявляя новые типы записей на основе уже имеющихся типов, пользователь может конструировать сколь угодно сложные типы данных.

Общим для структурированных типов данных является то, что они имеют внутреннюю структуру , используемую на том же уровне абстракции , что и сами типы данных.

Поясним это следующим образом. При работе с массивами или записями можно манипулировать массивом или записью и как с единым целым (создавать, удалять, копировать целые массивы или записи), так и поэлементно. Для структурированных типов данных есть специальные функции - конструкторы типов, позволяющие создавать массивы или записи из элементов более простых типов.

Работая же с простыми типами данных, например с числовыми, мы манипулируем ими как неделимыми целыми объектами. Чтобы "увидеть", что числовой тип данных на самом деле сложен (является набором битов), нужно перейти на более низкий уровень абстракции. На уровне программного кода это будет выглядеть как ассемблерные вставки в код на языке высокого уровня или использование специальных побитных операций.

3.2.1 Простые и структурированные типы данных. Структуры данных - записи, массивы, списки.

Переменные

В ходе программирования обычно необходимо запоминать некоторое количество данных (промежуточные результаты, произошедшие события, входные данные, выходные данные и т.д.). Эти значения приходится держать в памяти. Для этого объявляется место в памяти, которое используется для хранения данных и это объявленное место называется переменной. Поскольку данные, которые хранятся, могут быть самыми разными, то при объявлении переменной, объявляется и тип данных, которые будут храниться в этой переменной (тип переменной).

Простые типы

У переменной простого типа под ключевым словом скрывается одно значение (зачастую читаемое как число) и к нему есть прямой доступ. Наиболее известные простые типы это: целое число со знаком, целое число без знака, дробное число (с запятой), символ, логическое значение. В различных языках они могут немного отличаться.

Структурированные типы

В случае структурированных типов под одним ключевым словом группируются несколько совместных значений, таких например как координаты точки или имя и фамилия человека. В таком виде набор данных разом легче передавать. В то же время использовать или изменять данные внутри структуры приходиться по одному.

Массивы

Массив это набор данных одинакового типа, у которых одно имя и которые отделяются друг от друга при помощи индекса. Массивы значительно облегчают обработку однотипных данных. Простота обработки является результатом того, что в ходе выполнения программы можно просто менять индекс и таким образом проще обращаться к необходимой переменной. Получение значения переменной из массива при помощи порядкового номера является для компьютера довольно быстрой задачей.

Массивы могут быть одномерными (ряд, строка), двумерными(таблица, матрица), трёхмерными(куб) и т.д.

Пример (С#, Java)

int mass = newint; //создаётся массив для хранения десяти целых чисел

mass=1; //по индексу 0 записывается значение 1

Дополнительное чтение: http://enos.itcollege.ee/~jpoial/java/i200loeng4.html

Записи

Для хранения данных разных типов, которые вместе образуют некий связанный набор, используются записи. Например, запись человека формируется из следующих данных: имя(текст), фамилия(текст), пол(логическое значение, 0 - женщина, 1 - мужчина), вес(дробное число). Эти данные образуют одно целое при описании одного человека, однако, сами по себе очень разных типов.

Пример (C#)

structinimene {

publicstring eesnimi;

publicstring perenimi;

publicbool sex;

publicfloat weight;

С помощью этой записи мы можем создать переменную kasutaja(пользователь) и присвоить пользователю значения имени, фамилии, пола и веса:

inimene kasutaja;

kasutaja.eesnimi = "Jaan";

kasutaja.perenimi = "Mets";

kasutaja.sex = 1;

kasutaja.weight = 80.0;

Списки и деревья

В настоящее время часто для хранения данных используются списки (англ. List). Если каждый элемент списка указывает на следующий за ним элемент, то это связанный список, конец такого списка обозначается пустым элементом (null). Связанный список, где каждый элемент указывает только на следующий за ним, называется однонаправленным списком. Связанный список, где каждый элемент указывает на следующий и предыдущий элементы, называется двунаправленным. Связанный список, где отсутствуют первый и последний элементы, и каждый элемент указывает на следующий, называется кольцевым списком. Длина связанного списка определяется количеством его элементов. Первый элемент списка это голова (англ. Head) и остальные элементы - хвост (англ. Tail).

Стек (англ. Stack) это связанный список, в котором элемент добавленный последним - читается первым(англ. LIFO - Last In First Out (последним вошёл первым вышел)).

Очередь (англ. Queue) это связанный список, в котором элемент, добавленный первым - читается первым (англ. FIFO - First In First Out(первым вошёл, первым вышел)).

Дополнительное чтение: http://www.cs.tlu.ee/~inga/alg_andm/linked_list_C_2011.pdf

Дерево - это стрктура данных, в которой данные размещаются в виде дерева, состоит из вершин (англ. Node) и дуг (англ. Edges), которые соединяют вершины (указатели). Вершины, которые соединены дугами с вершиной расположенной выше называются детьми (англ. Childs), а расположенная выше вершина в этом случае является родителем (англ. Parent). Самая верхняя вершина - это корень (англ. Root). Вершину, у которой нет детей, называют листом (англ. Leaf).

Двигаясь от вершины к родителю, а оттуда к следующему родителю и т.д. достигаем корня. Предками называются все вершины находящиеся на пути от рассматриваемой вершины до корня. Высота дерева (англ. tree height) определяется самым длинным путём от листа к корню.

В случае упорядоченного дерева, корень и соединённые непосредственно с ним вершины определены, как вершины первого уровня (англ. First level nodes)(дети корня), а вершины соединённые напрямую с вершинами первого уровня - это вершины второго уровня (дети вершин первого уровня) и т.д.; также важным считается порядок детей слева на право.

Дополнительное чтение: http://www.cs.tlu.ee/~inga/alg_andm/tree_gen_2011.pdf

Двоичное дерево - это такое дерево, в котором у каждого родителя может быть один ребёнок, два ребёнка или совсем не быть детей и порядок детей важен.

Двоичное дерево поиска (англ. Binary search tree) - это двоичное дерево, которое упорядочено. Слева от вершины всегда находиться число меньшего размера и справа всегда большего.

При поиске по такому дереву искомое значение сравнивается с корнем и если искомое равно корню, то оно существует и найдено. Если искомое значение не равно корню, то операция сравнения продолжается дальше, соответственно сравнивая искомое с набором вершин, находящихся справа или слева до тех пор, пока не доходят до листьев. Если искомое значение равно значению одной из вершин, то искомый элемент найден и существует, однако если такой вершины не найдётся, то искомого элемента в данном дереве не существует. Такой способ поиска в разы быстрее, чем полный обход массива или связанного списка.

Б-дерево (англ. B tree) это дерево поиска, в котором количество детей у каждой вершины находится в промежутке от (t-1) до (2t-1), где t - это любая константа.

Б*-дерево - это Б-дерево, в котором вершины заполняются на 2/3, вначале заполняя две дочерние вершины путём перераспределения ключей и разбивая их после этого на 3 вершины.

За счёт этого Б-дерево позволяет сохранять глубину дерева меньше чем у бинарного дерева. Ограничивая заполнение, также есть возможность на промежуточных уровнях удерживать объем используемой памяти в чётко определённых пределах и в то же время можно сразу добавлять данные в подходящее место.

Тип данных определяет множество допустимых значений и множество допустимых операций.

Простые типы.

Простые типы делятся на ПОРЯДКОВЫЕ и ВЕЩЕСТВЕННЫЕ.

1. ПОРЯДКОВЫЕ ТИПЫ , в свою очередь, бывают:

а) целые

В Паскале определено 5 целых типов, которые определяются в зависимости от знака и значения, которое будет принимать переменная.

Название типа

Длина (в байтах)

Диапазон значений

32 768...+32 767

2 147 483 648...+2 147 483 647

б) логический

Название этого типа BOOLEAN. Значениями логического типа может быть одна из логических констант: TRUE (истина) или FALSE (ложь).

в) символьный

Название этого типа CHAR - занимает 1 байт. Значением символьного типа является множество всех символов ПК. Каждому символу присваивается целое число в диапозоне 0…255. Это число служит кодом внутреннего представления символа.

2. ВЕЩЕСТВЕННЫЕ ТИПЫ .

В отличие от порядковых типов, значения которых всегда сопоставляются с рядом целых чисел и, следовательно, представляются в ПК абсолютно точно, значения вещественных типов определяют произвольное число лишь с некоторой конечной точностью, зависящей от внутреннего формата вещественного числа.

Длина числового типа данных, байт

Название числового типа данных

Количество значащих цифр числового типа данных

Диапазон десятичного порядка числового типа данных

2*1063 +1..+2*1063 -1

СТРЕКТУРИРОВАННЫЕ ТИПЫ

Структурированные типы данных определяют упорядоченную совокупность скалярных переменных и характеризуются типом своих компонентов.

Структурированные типы данных в отличие от простых задают множества сложных значений с одним общим именем. Можно сказать, что структурные типы определяют некоторый способ образования новых типов из уже имеющихся.

Существует несколько методов структурирования. По способу организации и типу компонентов в сложных типах данных выделяют следующие разновидности: регулярный тип (массивы); комбинированный тип (записи); файловый тип (файлы); множественный тип (множества); строковый тип (строки); в языке Турбо Паскаль версии 6.0 и старше введен объектный тип (объекты).

В отличие от простых типов данных, данные структурированного типа характеризуются множественностью образующих этот тип элементов, т.е. переменная или константа структурированного типа всегда имеет несколько компонентов. Каждый компонент в свою очередь может принадлежать структурированному типу, т.е. возможна вложенность типов.

1. Массивы

Массивы в Турбо Паскале во многом схожи с аналогичными типами данных в других языках программирования. Отличительная особенность массивов заключается в том, что все их компоненты суть данные одного типа (возможно структурированного). Эти компоненты можно легко упорядочить и обеспечить доступ к любому из них простым указанием порядкового номера.

Описание массива задаётся следующим образом:

<имя типа> = array [<сп.инд.типов>] of <тип>

Здесь <имя типа> - правильный идентификатор;

Array, of – зарезервированные слова (массив, из);

<сп.инд.типов> - список из одного или нескольких индексных типов, разделённых запятыми; квадратные скобки, обрамляющие список, - требование синтаксиса;

<тип> - любой тип Турбо Паскаля.

В качестве индексных типов в Турбо Паскале можно использовать любые порядковые типы, кроме LongInt и типов-диапазонов с базовым типом LongInt.

Глубина вложенности структурированных типов вообще, а следовательно, и массивов – произвольная, поэтому количество элементов в списке индексов типов (размерность массива) не ограничено, однако суммарная длина внутреннего представления любого массива не может быть больше 65520 байт.

2. Записи

Запись – это структура данных, состоящая из фиксированного числа компонентов, называемых полями записи. В отличие от массива, компоненты (поля) записи могут быть различного типа. Чтобы можно было ссылаться на тот или иной компонент записи, поля именуются.

Структура объявления типа записи такова:

< имя типа > = RECORD < сп . полей > END

Здесь <имя типа> - правильный идентификатор;

RECORD, END – зарезервированные слова (запись, конец);

<сп.полей> - список полей; представляет собой последовательность разделов записи, между которыми ставится точка с запятой.

3. Множества

Множества – это набор однотипных логических связанных друг с другом объектов. Характер связей между объектами лишь подразумевается программистом и никак не контролируется Турбо Паскалем. количество элементов, входящих в множество, может меняться в пределах от 0до 256 (множество, не содержащее элементов, называется пустым).именно непостоянством количества своих элементов множества отличаются от массивов и записей.

Два множества считаются эквивалентными тогда и только тогда, когда все их элементы одинаковы, причём порядок следования элементов множества безразличен. Если все элементы одного множества входят также и в другое, говорят о включении первого множества во второе.

Описание типа множества имеет вид:

< имя типа > = SET OF < баз . тип >

Здесь <имя типа> - правильный индификатор;

SET, OF – зарезервированные слова (множество, из);

<баз.тип> - базовый тип элементов множества, в качестве которого может использоваться любой порядковый тип, кроме WORD, INTEGER и LONGINT.

Для задания множества используется так называемый конструктор множества: список спецификаций элементов множества, отделяемых друг от друга запятыми; список обрамляется квадратными скобками. Спецификациями элементов могут быть константы или выражения базового типа, а также – тип-диапазон того же базового типа.

4. Файлы

Под файлом понимается либо именованная область внешней памяти ПК, либо логическое устройство – потенциальный источник или приёмник информации.

Любой файл имеет три характерные особенности

    у него есть имя, что даёт возможность программе работать одновременно с несколькими файлами.

    он содержит компоненты одного типа. Типом компонентов может быть любой тип Турбо Паскаля, кроме файлов. Иными словами, нельзя создать «файл файлов».

    длина вновь создаваемого файла никак не оговаривается при его объявлении и ограничивается только ёмкостью устройств внешней памяти.

Файловый тип или переменную файлового типа можно задать одним из трёх способов:

< имя >= FILE OF < тип >;

< имя >=TEXT;

<имя> = FILE;

Здесь <имя> - имя файлового типа (правильный индификатор);

FILE, OF – зарезервированные слова (файл, из);

TEXT – имя стандартного типа текстовых файлов;

<тип> - любой тип Турбо Паскаля, кроме файлов.

В зависимости от способа объявления можно выделить три вида файлов:

· типизированные файлы (задаются предложением FILE OF…);

· текстовые файлы (определяются типом TEXT);

· нетипизированные файлы (определяются типом FILE).

О преобразовании числовых типов данных Паскаля

В Паскале почти невозможны неявные (автоматические) преобразования числовых типов данных. Исключение сделано только для типа integer, который разрешается использовать в выражениях типа real. Например, если переменные описаны следующим образом:

Var X: integer; Y: real;

то оператор

будет синтаксически правильным, хотя справа от знака присваивания стоит целочисленное выражение, а слева – вещественная переменная, компилятор сделает преобразование числовых типов данных автоматически. Обратное же преобразование автоматически типа real в тип integer в Паскале невозможно. Вспомним, какое количество байт выделяется под переменные типа integer и real: под целочисленный тип данных integer выделяется 2 байта памяти, а под real – 6 байта. Для преобразования real в integer имеются две встроенные функции: round(x) округляет вещественное x до ближайшего целого, trunc(x) усекает вещественное число путем отбрасывания дробной части.

алгоритм дискретный программирование

Реальные данные, которые обрабатывает программа, - это целые и вещественные числа, символы и логические величины. Эти простые типы данных называют базовыми. Все данные, обрабатываемые компьютером, хранятся в ячейках памяти компьютера, каждая из которых имеет свой адрес. Для того чтобы не следить за тем, по какому адресу будут записаны те или иные данные, в языках программирования используется понятие переменной, позволяющее отвлечься от адреса ячейки памяти и обращаться к ней с помощью имени (идентификатора).

Переменная - есть именованный объект (ячейка памяти), который может изменять свое значение. Имя переменной указывает на значение, а способ ее хранения и адрес остаются скрытыми от программиста. Кроме имени и значения, переменная имеет тип, определяющий, какая информация находится в памяти. Тип переменной задает:

  • * используемый способ записи информации в ячейки памяти;
  • * необходимый объем памяти для ее хранения.

Объем памяти для каждого типа определяется таким образом, чтобы в него можно было поместить любое значение из допустимого диапазона значений данного типа. Например, тип «байт» может принимать значения от 0 до 255, что в двоичном коде (255 = = 11111111 2) соответствует ячейке памяти длиной в 8 бит (или 1 байт).

В описанных выше алгоритмах все данные хранятся в виде переменных. Например, инструкция «Ввод двух чисел а, означает введение пользователем значений двух переменных, а инструкция «К=К+1» означает увеличение значения переменной К на единицу.

Если переменные присутствуют в программе, на протяжении всего времени ее работы - их называют статическими. Переменные, создающиеся и уничтожающиеся на разных этапах выполнения программы, называют динамическими.

Все остальные данные в программе, значения которых не изменяются на протяжении ее работы, называют константами или постоянными. Константы, как и переменные, имеют тип. Их можно указывать явно, например, в инструкции «К = К + 1» 1 есть константа, или для удобства обозначать идентификаторами: pi = 3,1415926536. Только значение pi нельзя изменить, так как это константа, а не переменная.

Для повышения производительности и качества работы необходимо иметь данные, максимально приближенные к реальным аналогам. Тип данных, позволяющий хранить вместе под одним именем несколько переменных, называется структурированным. Каждый язык программирования имеет свои структурированные типы. Рассмотрим структуру, объединяющую элементы одного типа данных, - массив.

Массивом называется упорядоченная совокупность однотипных величин, имеющих общее имя, элементы которой адресуются (различаются) порядковыми номерами (индексами). В качестве иллюстрации можно представить шкаф, содержащий множество пронумерованных ящиков (совокупность - «Ящик №1», «Ящик №2», «Ящик №3» и т.д.; «Ящик» - общее имя всех ее элементов). Доступ к содержимому конкретного ящика (элементу массива) осуществляется после выбора ящика по его номеру (индексу). Элементы массива в памяти компьютера хранятся по соседству, одиночные элементы простого типа такого расположения данных в памяти не предполагают. Массивы различаются количеством индексов, определяющих их элементы.

Одномерный массив (шкаф ящиков в один ряд) предполагает наличие у каждого элемента только одного индекса. Примерами одномерных массивов служат арифметическая и геометрическая последовательности, определяющие конечные ряды чисел. Количество элементов массива называют размерностью. При определении одномерного массива его размерность записывается в круглых скобках, рядом с его именем. Например, если сказано: «задан массив А(10)», это означает, что даны элементы: а р а 2 ,…, a ig . Рассмотрим алгоритмы обработки элементов одномерных массивов.

Ввод элементов одномерного массива осуществляется поэлементно, в порядке, необходимом для решения конкретной задачи. Обычно, когда требуется ввести весь массив, порядок ввода элементов не важен, и элементы вводятся в порядке возрастания их индексов.