Урок информатики на тему "формализация как важнейший этап моделирования". Моделирование Формализация описания реальных объектов и процессов

На начальном этапе моделирования выделяются существенные признаки изучаемого объекта и дается развернутое содержательное описание связи между ними (системный анализ), то есть осуществляется неформальная постановка задачи. Следующим важным этапом моделирования является формализация содержательного описания связей между выделенными признаками с помощью некоторого языка кодирования: языка схем, языка математики и т.д. ("перевод " полученной структуры в какую- либо заранее определенную форму).

Естественные языки используются для создания текстовых описательных информационных моделей. Например, такой литературный жанр, как басня или притча, имеет непосредственное отношение к понятию модели, поскольку смысл этого жанра состоит в переносе отношений между людьми на отношения между животными, между вымышленными людьми и пр.

С помощью формальных языков строятся информационные модели определенного типа - формально-логические модели. Например, с помощью алгебры логики можно построить логические модели основных узлов компьютера.

Формализация – этап перехода от содержательного описания связей между выделенными признаками объекта (словесного или в виде текста) к описанию, использующему некоторый язык кодирования(языка схем, языка математики и т. д.).

Формализация - процесс построения информационных моделей с помощью формальных языков.

Одним из наиболее распространенных формальных языков является алгебраический язык формул в математике , который позволяет описывать функциональные зависимости между величинами. Модели, построенные с использованием математических понятий и формул, называютсяматематическими моделями.

Моделирование любой системы невозможно без предварительной формализации. По сути, формализация – это первый и очень важный этап процесса моделирования.

Примером неформального описания модели является кулинарный рецепт или словесное описание модели парусника, или словесная формулировка второго закона Ньютона.

В тех случаях, когда моделирование ориентировано на исследование моделей с помощью компьютера, результатом формализации моделей должно быть программное средство. Поэтому принципы формализации можно сформулировать в следующем виде:

разработка неформального описания модели (словесное описание существенных для рассматриваемой задачи характеристик изучаемого объекта и связей между ними);

составление формализованного описания на некотором языке кодирования (с использованием математических соотношений и текстов);

реализация формализованного описания в виде программы на некотором языке программирования.

Например, формула F=m*a является формализованным описанием второго закона Ньютона.

Модель – некоторое упрощенное подобие реального объекта, который отражает существенные особенности (свойства) изучаемого реального объекта, явления или процесса.

Моделирование – метод познания, состоящий в создании и исследовании моделей. Т.е. исследование объектов путем построения и изучения моделей.

Формализация – процесс построения информационных моделей с помощью формальных языков.

Объект – некоторая часть окружающего мира, рассматриваемого человеком как единое целое. Каждый объект имеет имя и обладает параметрами.

Параметр – признак или величина, характеризующая какое-либо свойство объекта и принимаемая различные значения.

Среда – условие существование объекта.

Операция – действие, изменяющее свойство объекта.

Система – совокупность взаимосвязанных объектов, воспринимаемая как единое целое.

Структура – состав системы, свойства её элементов, их отношения и связи между собой.

Этапы моделирования :

    Постановка задачи : описание задачи, цель моделирования, формализация задачи

    Разработка модели : информационная модель, компьютерная модель

    Компьютерный эксперимент – план эксперимента, проведение исследования

    Анализ результатов моделирования

Цели:

    дать учащимся общее представление о формализации объекта;

    сформировать понятие формализации;

    развить исследовательскую компетентность учащихся при формализации модели, логическое мышление, расширить кругозор;

    развить познавательный интерес, воспитать информационную культуру.

Программно-дидактическое обеспечение

ЭВМ типа IBM , операционная система Windows , ППП MS Office XP и выше,

Презентация Формализация . pps .

Теоретический материал

Формализация как важнейший этап моделирования

Слайд №1

В своей деятельности - художественной, научной, практической - человек очень часто создает некоторый образ того объекта (процесса или явления), с которым ему приходится или придется иметь дело, - модель этого объекта. Создание этого образа всегда преследует некую цель. Модель важна не сама по себе, а как инструмент, облегчающий познание или наглядное представление.

В процессе познания окружающего мира и общения мы сталкиваемся с формализацией почти на каждом шагу: формулируем мысли, оформляем отчеты, заполняем всевозможные формуляры и формы, преобразуем формулы. При изучении нового объекта сначала обычно строится его описательная информационная модель на естественном языке, затем она формализуется, то есть, выражается с использованием формальных языков (математики, логики и др.).

Таким образом, прежде чем построить модель объекта (явления, процесса), необходимо выделить составляющие его элементы и связи между ними (провести системный анализ) и «пере­вести» (отобразить) полученную структуру в какую-либо заранее определенную форму - формализовать информацию.

Слайд №2

Формализация - это процесс выделения и перевода внутренней структуры предмета, явления или процесса в определенную информационную структуру - форму. Моделирование любой системы невозможно без предварительной формализации. По сути, формализация - это первый и очень важный этап процесса моделирования.

Формализация - это замена реального объекта или процесса его формальным описанием, т. е. его информационной моделью.

Слайд №3

Построив информационную модель, человек использует ее вме­сто объекта-оригинала для изучения свойств этого объекта, прогнозирования его поведения и пр. Прежде чем строить какое-то сложное сооружение, например мост, конструкторы делают его чертежи, проводят расчеты прочности, допустимых нагрузок. Та­ким образом, вместо реального моста они имеют дело с его мо­дельным описанием в виде чертежей, математических формул. Если же конструкторы пожелают воспроизвести мост в уменьшенном размере, то это уже будет натурная модель - макет моста.

Слайд №4

Естественные языки используются для создания описательных информационных моделей. В истории науки известны многочисленные описательные информационные модели; например, гелиоцентрическая модель мира, которую предложил Коперник, формулировалась следующим образом:

    Земля вращается вокруг своей оси и вокруг Солнца;

    орбиты всех планет проходят вокруг Солнца.

Слайд №5

С помощью формальных языков строятся формальные информационные модели (математические, логические и др.). Одним из наиболее широко используемых формальных языков является математика. Модели, построенные с использованием математических понятий и формул, называются математическими моделями. Язык математики является совокупностью формальных языков.

Слайды №6-8

Язык алгебры (алгебры высказываний) позволяет формализовать функциональные зависимости между величинами. Так, Ньютон формализовал гелиоцентрическую систему мира, открыв законы механики и закон всемирного тяготения и записав их в виде алгебраических функциональных зависимостей. В школьном курсе физики рассматривается много разнообразных функциональных зависимостей, выраженных на языке алгебры, которые представляют собой математические модели изучаемых явлений или процессов.

Язык алгебры логики позволяет строить формальные логические модели. С помощью алгебры высказываний можно формализовать (записать в виде логических выражений) простые и сложные высказывания, выраженные на естественном языке. Построение логических моделей позволяет решать логические задачи, строить логические модели устройств компьютера (сумматора, триггера) и так далее.

В энциклопедическом словаре приведена следующая трактовка этого понятия: «Формализация - это представление и изучение какой-либо содержательной области знаний (научной теории, рассуждения, процедур поиска и т. п.) в виде формальной системы или исчисления.

Слайд №9

В контексте моделирования под формализацией будем понимать процесс перевода описания задачи в общем виде (общей формулировки задачи) на язык формального представления, с тем чтобы создать компьютерную модель и исследовать ее. С точки зрения обработки информации следует определить исходные данные (что необходимо обрабатывать) и описать правила обработки (как обрабатывать).

Слайд №10

Формализация - один из главных инструментов математики. Т.к. математика оперирует реально несуществующими сущностями, абстрактными понятиями, описывает законы, теоремы, правила, гипотезы и прочее, то без соглашений о представлении всего этого здесь невозможно обойтись.


Начиная с древнейших времен, становление человеческой цивилизации неразрывно связано с моделированием, то есть с построением, изучением и использованием моделей различных объектов, процессов и явлений. Например, в разговоре мы как бы замещаем реальные объекты их именами. И от имени не требуется ничего, кроме того, чтобы однозначно обозначить необходимый объект.

В своей деятельности – в практической сфере, художественной, научной - человек всегда создает некий слепок, заменитель того объекта, процесса или явления с которым ему приходится иметь дело:

    это может быть натурная копия – картина или скульптура;

    это может быть модель самолета (например для изучения его аэродинамических характеристик);

    это может быть макет какого-либо изделия, по которому в дальнейшем будет изготавливаться оригинал;

    математическая формула, описывающая некий процесс (например, закона тяготения).

Таким образом, мы с детства сталкиваемся с понятием "модель". Модель дает нам образ реального объекта или явления, то есть модель является представлением объекта в некоторой форме, отличной от формы его реального существования. Модель – это мощное орудие познания.

К созданию моделей прибегают, когда исследуемый объект либо очень велик (модель солнечной системы), либо очень мал (модель атома), когда процесс пробегает очень быстро (модель двигателя внутреннего сгорания) или очень медленно (геологические модели), исследование объекта может привести к его разрушению (модель самолета) или создание модели очень дорого (архитектурный макет города) и т. д.

Каждый объект имеет большое количество различных свойств. В процессе построения модели выделяются главные, наиболее существенные, свойства, те которые интересуют исследователя. В этом главная особенность и главное назначение моделей.

Таким образом, под моделью мы будем понимать некоторый объект, замещающий реальный исследуемый объект с сохранением наиболее существенных его свойств

Не бывает просто модели, «модель» - это термин, требующий уточняющего слова или словосочетания, например: модель атома, модель Вселенной. В каком-то смысле моделью можно считать картину художника или театральный спектакль (это модели, отражающий ту или иную сторону духовного мира человека).

Основные цели моделирования:

1.понять как устроен конкретный объект , какова его структура, основные свойства, законы развития и взаимодействия с окружающим миром (ПОНИМАНИЕ).

2. научиться управлять объектом (процессом) и определить наилучшие способы управления при заданных целях и критериях (УПРАВЛЕНИЕ).

3. прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект (ПРОГНОЗИРОВАНИЕ).

Еще раз отметим, что любая модель не является копией объекта, а отражает лишь наиболее важные, существенные для объекта черты и свойства, пренебрегая остальными характеристиками объекта, которые несущественны в рамках поставленной задачи.

Различают модели:

1. материальные (натурные) – основываются на чем-то объективном, существующем независимо от человеческого сознания (на каких-то телах или процессах). Их делят на физические (например авиамодели) и аналоговые, основанные на процессах, аналогичных в каком-то отношении изучаемому (например процессы в электрических цепях оказываются аналогичными многим механическим, химическим и другим процессам и могут быть использованы для их моделирования). Граница между физическими и аналоговыми условна.

2. идеальные –неразрывным образом связаны с человеческим мышлением, воображением, восприятием. Можно выделить интуитивные модели –театр, литература, живопись и т.п. Единого подхода к классификации идеальных моделей нет. Можно так:

    вербальные (текстовые) модели – используют последовательности предложений на диалектах естественного языка для описания той или иной области действительности. Например, милицейский протокол.

    математические модели – широкий класс моделей, использующих математические методы.

    информационные модели – класс моделей, описывающих информационные процессы (возникновение, передачу, преобразование и использование информации) в системах разнообразной природы.

Разделение опять же условно – информационные могут быть подклассом математических. Информатика имеет самое непосредственное отношение к информационным и математическим моделям, поскольку они – основа применения компьютера при решении задач различной природы (ядерная зима).

Что касается компьютерного моделирования – компьютер не «мыслит» - он способен реализовывать программы, составленные человеком. Поэтому, чтобы использовать компьютер в своих целях человеку необходимо:

    четко поставить проблему;

    разработать модель исходных данных;

    определить модель представления результатов;

    разработать алгоритм решения задачи;

    написать программу;

    ввести программу и исходные данные в память;

    отладить программу, запустить на выполнение и вывести на принтер или экран результаты.

Сегодня очень часто можно встретить многим непонятный термин «формализация», причем в самых разных областях науки и техники. Тем, кто хочет своих знаний, желательно понять, что такое формализация. В статье будет рассмотрена суть этого термина и практическое применение процесса.

Что такое формализация с научной точки зрения в общем понимании?

Затронем немного научный аспект. Будем отталкиваться от того, что слово формализация происходит от слова "формальность", то есть является условным, а иногда даже абстрактным понятием, позволяющим объяснить природу несуществующего объекта или явления и спрогнозировать его свойства в определенной среде при заданных начальных условиях.

Лингвистика любого современного языка абсолютно не совпадает с выражением или природой мышления. Таким образом, логика сама по себе вынуждена использовать некие отвлеченные понятия, чтобы описать то или иное явление. Так и появляется относительное понятие формальности происходящего.

Как уже нетрудно догадаться, суть формализации сводится к тому, чтобы описать или предопределить некие свойства объекта или процесса (даже не существующего на данный момент) и спрогнозировать его применение в случае появления в реальном мире. Но это общее представление. Само понятие формализации куда шире. Для начала остановимся на компьютерных технологиях, рассмотрим, как в мире электронники применяется данное понятие.

Компьютерная формализация

Если затрагивать тему компьютеров, метод формализации такого типа является, скорее, обработкой начально заданных условий, которые позволяют с достаточно высокой степенью точности определить дальнейшее поведение объекта или процесса.

По такому принципу работают практически все метеослужбы. Имея компьютерную модель циклона, можно спрогнозировать его цикл и мощность над сушей или над водным пространством.

Вспомните фильм «Послезавтра», в котором ученый предсказал глобальное потепление, исходя именно из такой методики. У него была разработана компьютерная модель, позволявшая с определенной долей вероятности предсказать дальнейшие события.

Данные примеры доступно объясняют, что такое формализация.

Принципы моделирования объектов и процессов

Основные методы формализации - это прогнозирование и моделирование. Применяются такие технологии исключительно для получения конечных данных об объектах или процессах, которые не известны, но их можно предположить и с высокой точностью рассчитать.

Если посмотреть на виды формализации, практически все они сводятся только к логическим умозаключениям и вычислениям. Читателю не составит труда провести параллель между компьютерным моделированием, доказательством теорем и т. д. на основе аксиом и постулатов.

Посмотрите, ведь та же тоже может быть трактована как метод формализации, ведь на практике проверить доказательство не представляется возможным. В частности это касается константы распространения света, замедления времени на пороге ее достижения, увеличения гравитационной массы объекта и искривления пространства. Руками, как говорится, это не пощупаешь и глазами не увидишь.

Когда-то это были только смелые умозаключения ученого на основе простейших опытов. Сегодня все это подтверждается официальной наукой на основе все того же компьютерного моделирования.

Этапы формализации

Если рассматривать компьютерные системы, то первым этапом формализации является описание процесса. Но здесь не используются инструменты обычного языка (буквы, слова, словосочетания, предложения). Создать определенную можно только с использованием некоего алгоритма на основе выбранного языка программирования, но только после постановки общей задачи.

Иными словами, при моделировании поведения объекта или процесса суть происходящего нужно описать чисто математическими символами, применив математический алгоритм.

Результатом формализации является получение анализа действительного предсказуемого события, которое последует после того, как исследуемая технология будет применена на практике или определенный природный процесс войдет в стадию реального проявления.

Далее следует концептуализация поставленной задачи. Здесь есть два варианта: в первом случае это определение подхода в виде использования атрибутов и признаков; второй вариант подразумевает применение когнитивного анализа, не говоря уже о постановке задачи, сбора начально используемых данных, условий и т. д.

После и начальных условий изучаются существующие взаимосвязи между объектами и процессами, а также так называемые семантические отношения, подразумевающие использование методики локального представления.

Далее следует обработка начальных данных на основе выбранного алгоритма, после чего выдается результат с указанием процента погрешности. Как правило, она не превышает 5%, а в большинстве случаев результат вероятности доходит до 99%. Любой человек или машина все равно оставляют «запас прочности» на ведь абсолютно все учесть невозможно.

Зачем все это нужно?

Если разобраться, такие принципы позволяют производить анализ поведения объектов и процессов. Иными словами, можно предугадать, как будет развиваться тот или иной процесс.

Теперь уже понятно, что такое формализация. Давайте рассмотрим простейший пример.

Применение формализации на практике, простейшие примеры

Допустим, какой-то специалист разработал новую конструкцию самолета. С учетом дороговизны проекта строить модель оригинального размера без предварительного прогноза ее поведения в воздухе является задачей совершенно нецелесообразной. Более того, проведение испытаний в той же аэродинамической трубе самолета размером с Boeing является абсолютно нереальной задачей.

Формализация позволяет при заранее заданных характеристиках будущего летательного аппарата (сопротивления воздуха, бокового ветра, высоты и параметров самой аэродинамической трубы и остальных характеристик) смоделировать полет без постройки модели самолета.

Еще одним примером можно назвать тестирование новых машин, проводимое автомобильными концернами. Основной метод формализации в данном случае заключается в том, что сначала все они проходят виртуальный тест, а после получения положительных результатов опытные образцы запускаются в производство для тестирования в реальных условиях.

Основные результаты

Результат математического моделирования во многом (если не на все сто процентов, то с вероятностью до 95%) может стать весомым аргументом в пользу выпуска современной техники, поможет предсказать погоду, даже спрогнозировать общественное поведение как реакцию на события в мире.

Да-да! в мире тоже подчиняется своим собственным законам. Достаточно воздействовать на него в нужнои направлении. Сегодня уже создано немало программ, позволяющих спрогнозировать реакцию общества на то или иное событие. И это далеко не все примеры формализации. Если копнуть глубже, мы с этим сталкиваемся каждый день.

Одним из самых ярких примеров формализации можно назвать и обнаружение при столкновении элементарных частиц в Большом Адронном коллайдере. А ведь раньше считалось, что существование этой частицы - чистой воды теория, причем абсолютно не доказуемая реальными опытами.

Заключение

Как видим, в понятии формализации, несмотря на научную сложность сути процесса, легко разобраться на примерах. Она в большинстве случаев сводится к использованию неких логических цепочек, предопределяющих конечный результат.

ФОРМАЛИЗАЦИЯ

ФОРМАЛИЗАЦИЯ

(2) Исходные постулаты (аксиомы) ФГпри получении из них теорем должны рассматриваться как цепочки бессодержательных символов, из которых по фиксированным правилам вывода получаются новые цепочки символов (теоремы). Иначе говоря, процесс получения теорем не должен осуществляться на основании очевидности, подтверждаемости практикой и т. п.

(3) Между классом теорем ФТк классом содержательно истинных утверждений теории Г должно быть определенное оговоренное , позволяющее ФТ считать формализацией Г (точнее об этом ниже).

Пункт (2) существенным образом отличает ФГот Г. В Г не обязательно есть фиксированные правила вывода, и для получения новых утверждений можно опираться на содержательный терминов и имеющийся . Если, напр., в Гсодержится , что α произошло раньше события β, то мы обязаны по содержательным основаниям относить к верным утверждениям теории Гтакже и то, что β произошло позже а. Вместе с тем мы не обязаны фиксировать это. Иначе в ФТ. Здесь логические связи между отношениями раньше и позже должны быть явным образом отображены. И если указанные отношения обозначаются как “” соответственно, то ФГдолжна содержать , позволяющее переходить от (αα). Очевидно, в ФТ придется указать также на указанных отношений. Кратко говоря, в ФГпридется отобразить логику данных отношений, необходимую для описания соответствующей предметной области. При этом сама эта логика может зависеть от того, напр., будет считаться непрерывным или дискретным, бесконечно или конечно делимым, даже если в Г эти вопросы не обсуждаются. Т. о., формализация состоит не просто в том, чтобы осуществить запись Гв некотором символическом языке, но в том, чтобы выявить и отобразить при этом логику, которой будут удовлетворять высказывания с теми терминами, которые фигурируют в Т. Решение такой проблемы является профессиональной задачей логики вообще и может исследоваться независимо от тех или иных конкретно взятых содержательных теорий и задач, связанных с их формализацией. Так, напр., в логике формализуются теории алогических, эпистемических, деонтических, временных и другие модальностей, полные относительно некоторых содержательных семантик. Вопрос о возможности формализации теории Гесть поэтому не только о готовности к этой процедуре со стороны Г, но и о том, в достаточной ли степени разработан для этой цели имеющийся и математический аппарат.

В связи с пунктом (3) надо иметь в виду, что ФГв явном виде содержит всю необходимую для формализации теории Глогику и математику и соответствующий им правил или содержательно интерпретируемых теорем, напр., контрапозиции импликации: (Α-ϊΒ)->(-ιΒ-*-τΑ) и т. п., которым фактически нет соответствия в Т. Кроме того, Т обычно не детерминирует всех логических взаимоотношений высказы

ваний, содержащих используемую в ^терминологию. Поэтому ФТ практически всегда задает ту или иную экспликацию этой терминологии. Если даже отвлечься от возможности использования в ФГразличных базовых логик и математик, то уже только оправданные содержанием Г логические различия в экспликациях терминологии позволяют построить для одной и той же содержательной теории Г альтернативных формализации. При этом теория Гв зависимости от того, какая конкретная формализация будет сочтена адекватной, будет в той или иной степени менять свой смысл. Дело логика указать, чем отличаются возможные альтернативы, но не в его компетенции считать какую-то из них более предпочтительной, не говоря уже более верной. Чтобы иметь возможность содержательного обсуждения теории ФТ, в частности, говорить о ее непротиворечивости, полноте, доказуемости или недоказуемости в ней теорем определенного рода, используется т. н. (в отличие от языка, на котором сформулирована ФТ), и все верные утверждения такого рода относят к метатеории МФТ.

Проблему формализации содержательной теории Гв ФГможно считать решенной, если в рамках метатеории.МФГудается показать, что каждому истинному в принятой интерпретации предложению Т соответствует доказуемое утверждение Φ Γ ( полноты), и наоборот (теорема адекватности). В силу разных причин такого положения не всегда удается добиться. Об этом говорит, в частности, известная теорема К. Геделя (1931) о неполноте непротиворечивой формализованной арифметики. Дело в том, что некоторая формализуемая теория Гможет содержать столь богатый выразительными возможностями язык, что в ее рамках могут строится утверждения о формализующей ее системе ФГи, значит, отображаться в последней. Происходит т. н. замыкание языка и метаязыка. Любая непротиворечивая формализация теории Т оказывается принципиально неполной, так как любое ФГпорождает класс новых содержательно истинных в МФТтл в самой Гпредложений. Именно такого рода теорией Гоказывается содержательная арифметика. В объектном языке формализующей эту арифметику теории ФТ можно строить утверждения о самой этой теории, которые при содержательной интерпретации становятся истинными предложениями теории Т. В ФГвоспроизводится, в частности, некоторая парадокса лжеца (см. Парадокс логический), т. к. всегда находится формула, утверждающая свою собственную недоказуемость в ФТ. Такая формула содержательно истинна именно потому, что в ФТ недоказуема. Ее в Г и при этом недоказуемость в ФГговорит о неполноте последней. Теорема Геделя не исключает возможности полной формализации более узких фрагментов математики. Теореме Геделя о неполноте не следует придавать преувеличенного, во всяком случае универсального философского значения и распространять ее следствия на теории, при формализации которых принципиально отсутствуют и не могут возникнуть рассмотренные выше причины, препятствующие полной формализации всех истинных предложений содержательной математики. Лит.: КаиниС. К. Введение в метаматематику. М., 1957.

Ε. А. Сидоренко

Новая философская энциклопедия: В 4 тт. М.: Мысль . Под редакцией В. С. Стёпина . 2001 .


Синонимы :