Технология sxrd x3. LCOS-технология наступает

Упрощенно, проектор представляет собой коробку, в которой есть лампа и есть объектив. Но лампа+объектив - это, скорее, прожектор, чем проектор - надо, чтобы на пути света было что-то, формирующее изображение. Когда-то это была пленка:

Вспомните диапроекторы: пользователь вручную вставляет пленку между лампой и объективом, и мы, по сути, имеем тот же принцип образования изображения, что сегодня:

  • черный участок пленки пытается блокировать свет,
  • белые участки пленки прозрачны и пропускают свет,
  • полупрозрачные участки могут быть цветными, окрашивая изображение на экране.

У этой технологии налицо те же недостатки изображения, которые до сих пор в той или иной степени волнуют нас при выборе проектора.

  1. Пленка пытается блокировать черный цвет, но у нее это плохо получается - проблема с контрастностью и уровнем черного .
  2. Яркость ограничена лампой и способностью всей системы, включая пленку, переносить жару. Изображение тусклое.
  3. Изображение имеет нежелательный оттенок из-за особенностей пленки и лампы, ее «цветовой температуры».
  4. Если диафильм цветной, то цвета ненасыщенные и не всегда понятно, как именно они должны выглядеть по задумке автора - ограничения пленки.

Главное отличие современного мультимедийного проектора состоит в том, что вместо пленки используется некая матрица, которая постоянно обновляется, рисуя новую картинку минимум 60 раз в секунду.

Как образуется цветное изображение?

Тем не менее, матрица не имеет никакого отношения к образованию цвета. Матрица производит монохромное изображение. Светишь через нее белым - будет черно-белое, светишь красным - черно-красное.

Поскольку любой sRGB цвет можно получить смешением красного, зеленого и синего, то любое цветное изображение можно получить наложением друг на друга черно-красного, черно-зеленого и черно-синего.

Ниже - знаменитая цветная фотография, восстановленная американцами из трех черно-белых карточек Прокудина-Горского (снято до 1917 года):

Они говорят, что черно-белые карточки соответствуют красному, зеленому и синему компонентам изображения. Американцем надо доверяй-но-проверяй - проверяю в «Фотошопе», подставляя одну карточку на красный канал, другую на зеленый, третью на синий:

Правду говорят. Итак, если белый цвет будет прозрачным, и мы посветим через каждую фотографию фонариком правильного цвета, то, соевместив три изображения на экране, получим нашу цветную фотографию.

Этот принцип используют все проекторы: матрицы из потоков света красного, зеленого и синего цветов создает три изображения, которые накладываются друг на друга и дают нам цветное изображение на экране.

Иногда совмещается более трех, но трех достаточно.

Трехматричные и одноматричные проекторы

Пожалуй, в технологиях проекторов это - главное отличие. Существует два способа наложения упомянутых красного, зеленого, синего изображений друг на друга: одновременное наложение и последовательное наложение.

Одновременное наложение осуществляется у трехматричных проекторов: красный, зеленый и синий потоки проходят через отдельныю матрицы, а потом соединяются, и готовая цветная картинка идет на экран.

Трехматричный подход на примере 3LCD технолонии

На примере 3LCD технологии это выглядит так:

  1. Белый свет вышел из лампы.
  2. Пришел на фильтр, разделился на красный и голубой.
  3. Красный прошел через матрицу №1, получилось красное изображение.
  4. Голубой разделился на зеленый и синий.
  5. Зеленый пошел на матрицу №2, синий - на матрицу №3.
  6. Имеем три изображения, которые наложились друг на друга - получилось одно цветное.
  7. Цветное изображение ушло на экран.

При наложении «по очереди» проектору достаточно одной матрицы - на нее сперва подают красный, потом зеленый, потом синий, и проектор отрисовывает на экране сначала красное, потом зеленое, потом синее изображение.

Одноматричный подход на примере «1-DLP» технологии
Обратите внимание: DLP матрица… зеркальная (об этом позже)

Это происходит очень быстро и, подобно тому, как мы не видим отдельные спицы крутящегося велосипедного колеса, мы не видим отдельных цветных изображений на экране, а видим результат их соединения - готовое цветное изображение, хотя и сформированное не в проекторе, а «в голове зрителя».

В обоих случаях мы получаем цветное изображение. Теперь касательно плюсов и минусов одноматричного и трехматричного подходов.

  1. Стоимость. Три матрицы - дороже, чем 1 матрица. 1 матрица дешевле, чем 3.
  2. Эффективность. Трехматричный проектор в каждый момент времени работает с красным, зеленым и синим, а одноматричный - только с одним цветом (остальное выбрасывается). Трехматричный проектор имеет заметно больший КПД использования света лампы.
  3. Сведение матриц. Когда есть три матрицы, их сложно идеально подгонять друг к другу, а одноматричные проекторы не имеют такой проблемы - если оптика не подводит, то каждый пиксель на экране будет резким, четко обозначенным.
  4. Нежелательные визуальные эффекты (артефакты). Как бы часто ни сменялись цветные изображение на экране одноматричного проектора, будут возникать условия, когда глаз распознает, выделит эти отдельные цвета. Особенно часто это происходит на динамичных контрастных темных сценах, когда взгляж бегает по экрану. Таких ситуаций много, например, в «Темном Рыцаре». Глаз дернулся - за ярким объектом на долю секунды виден цветной шлейф. Это называется "эффект радуги " или «эффект разделения цветов».

Обратите внимание - формально это все не имеет никакого отношения к технологиям LCD или DLP. Тем не менее, так уж вышло, что самая массовая, самая бюджетная часть проекторов представлена одноматричными DLP и трехматричными LCD (3LCD) проекторами, которые наследуют все плюсы/минусы одноматричного и трехматричного подходов.

Отдельно стоит коснуться вопроса об эффективности , так как не сразу понятно, что следует из большей эффективности использования света лампы. Предположим вы берете лампу на 190 Вт и ставите ее в бюджетный проектор. Более эфффективный проектор сможет извлечь из этих 190 Вт больше яркости , либо столько же яркости при меньшей нагрузке на лампу, продлевая ее ресурс . Тут преимущество на стороне трехматричной технологии, поэтому у одноматричных проекторов существует традиция иметь яркий режим изображения, в котором максимальная яркость соответствует аналогичному трехматричному проектору, но только по белому цвету , а цвета при этом сильно тусклее, чем должны быть. Чаще всего это делается следующим образом: вместо создания цветного изображения из красного, зеленого, синего, добавляется еще и белый (прозрачный):


На изображениях - цветовое колесо одноматричного проектора с прозрачным сегментом

Другими словами, один из компонентов изображения - черно-белый, полученный не смешением цветов, а «тупо» пропусканием света лампы на экран в обход фильтров . Тем не менее, эти методы используются там, где важно сочетание цены и высокой яркости. К примеру, у офисных проекторов это годится для отображения документов, но проектору для домашнего кинотеатра высокая яркость не нужна - в таких проекторах используется цветовое колесо RGBRGB (шестисегментное):

Повторяя полный цикл цветов два раза за поворот, снижается также заметность «эффекта радуги».

LCD и DLP

Если рассматривать непосредственно матрицы, то LCD (ЖК) матрица больше всего напоминает вышеупомянутую пленку диапроектора, поскольку работает она "на просвет ", вставая на пути у светового потока. Задача каждого пикселя - блокировать свет, либо пропустить его дальше.

DLP матрица работает не на просвет, а по отражательному принципу . Каждый его пиксель представляет собой микроскопическое зеркало, которое, поворачиваясь, отражает свет на экран, либо, в отклоненном положении, сбрасывает его на светопоглотитель.

В целом, зеркала превосходно справляются с задачей отсекания ненужного света , поэтому DLP матрица («DMD» чип) способна дать заметно большую контрастность , чем LCD матрица (при прочих равных). Безусловно, контрастность зависит не только от матрицы, а с удорожанием оной получается достигать более высоких уровней контрастности (взять хотя бы такие LCD проекторы, как EH-TW9200/9300 - огромная контрастность!). Тем не менее, в сухом остатке мы говорим о преимуществе DLP проекторов по контрастности и уровню черного.

Путь света в DLP проекторе: лампа-цветовое колесо-зеркало-матрица-...

LCD технология встречается практически исключительно в трехматричной конфигурации (Epson 3LCD), подовляющее большинство DLP проекторов одноматричные, в дорогих сегментах (некоторые инсталляционные проекторы, элитные домашние и кинотеатральные проекторы) присутствует трехматричная DLP технология.

«Эффект москитной сетки»

Предположительно, еще одно преимущество технологии DLP - меньшее межпиксельное пространство .

Дело в том, что работающая на просвет LCD матрица требует подведения контуров к каждому пикселю, а эти контуры могут проходить только между пикселями - получается некое неиспользованное пространство между ними. Преимущество DLP матриц в том, что упомянутые контуры идут под зеркалами, хотя сама необходимость в смене положения зеркал также создает некий межпиксельный зазор. В итоге, 3LCD проекторы имеют тенденцию к чуть более заметному межпиксельному интервалу, чем DLP проекторы.

LCoS, в т.ч. D-ILA, SXRD, 3LCD Reflective

Правда, последние отрицают, что являются LCoS-ом...

По мере движения в более дорогие сегменты проекторов, появляется технология LCoS («жидкие присталлы на кремнии»). Многие производители именуют ее по-своему. Sony - «SXRD», JVC - «D-ILA», Epson - «Reflective 3LCD», или «Отражательная 3LCD». Что ж, последнее довольно точно отражает суть.

Эта технология - попытка сочетать преимущества LCD и DLP технологий. Расположенные на зеркальной поверхности жидкокристаллические матрицы дважды пропускают через себя свет, лучше отсекая черный (высокая контрастность), при этом они не имеют подвижных элементов, а управляющие контуры расположены под зеркалами, что позволяет добиться меньшего межпиксельного пространства, чем и у LCD, и у DLP.

Упомянутые технологии встречаются только в трехматричной конфигурации. Схема образования цветов похожа на 3LCD, с той лишь разницей, что LCoS матрицы отражают свет, а не пропускают через себя:

Источник света: лампы и безламповые проекторы

Сравнивая современный цифровой проектор с диапроектором, мы говорили о матрицах, пришедших на смену пленке, а теперь пора поговорить о лампе.

Классический источник света - ртутные лампы . В зависимости от типа лампы и уровня нагрузки, ресурс такой лампы составляет от 3000 до 5000 часов при максимальной яркости. Как считается ресурс? Насколько мне известно, до расчетного момента падения яркости лампы на 50%. Это и есть первый недостаток ламп - постепенное снижение яркости.

Лазеры и светодиоды - другое дело! Ресурс - 20000 или даже 30000 часов! Яркость тоже постепенно снижается, но более линейно и на протяжении такого срока.

А есть еще ксеноновые лампы - у них ресурс даже меньше, чем у ртутных, но есть свои преимущества.

Спектральное излучение ксеноновых и ртутных (mercury) ламп

В итоге существенный недостаток ртутных ламп в итоге в том, что испускаемый ими свет содержит слишком много зеленого. Это значит, что лишний зеленый цвет, несущий значительную часть световой энергии, нужно отсекать и выбрасывать, чтобы зеленый, красный и синий были в правильных пропорциях и при смешении давали правильный белый цвет (нейтральный, без оттенков). Однако, существует договоренность, что в самом ярком режиме проектора заметные потери по цветопередаче являются приемлемыми. Таким образом, в самом ярком режиме изображения картинка приобретает слегка зеленоватый оттенок.

К примеру, по моим наблюдениям наиболее выраженный зеленоватый оттенок в самом ярком режиме - у DLP проекторов с RGBRGB цветовым колесом, далее идут 3LCD проекторы, далее - DLP проекторы с прозрачным сегментом - каким-то образом у них получается добиться довольно нейтрального белого. Но проблема тут еще и в том, что при переходе из самого яркого режима в самый точный мы в любом случае улучшаем цветопередачу и отсекаем лишний зеленый с помощью матриц проектора, и тут внезапно обнаруживается, что, убрав лишний зеленый, мы получили существенное падение яркости, но при этом черный цвет не изменился, он одинаков у яркого и у точного режима! Яркость снизилась, черный остался, - значит контрастность снизилась во столько раз, во сколько снизилась яркость - до двух раз! Такие дела. Перешли в точный режим, предназначенный для темноты и потеряли контрастность… просто отлично!

В этом смысле ксеноновые лампы имеют более ровными характеристики, хотя используются они ну очень редко и на дорогих проекторах.

Еще одна странная проблема с ртутными лампами - почему-то они не позволяют большинству проекторов отобразить 100% правильный sRGB зеленый цвет - обязательно немного уходит в желтизну.

Ну и очевидно то, что лампы греются и требуют мощного активного охлаждения , что не только увеличивает размер проектора, но и увеличивает его шумность. Также, лампам требуется некоторое время для выхода на полную мощность и, в зависимости от проектора, может требоваться то или иное время, прежде чем отключать питание - лампу нужно охладить.

Со светодиодами (LED) ситуация иная: светодиоды могут быть предельно компактными и позволяют создавать исключительно миниатюрные проекторы, но по иронии у них проблема с яркостью как раз зеленого светодиода, поэтому яркость светодиодного проектора обычно довольно сильно ограничена. Существенное преимущество светодиодов - способность обладать очень узким спектром излучения, то есть, очень насыщенным, чистым цветом. В связи с этим из RGB (красный, зеленый, синий) светодиодов можно добиться более широкого охвата цветов, чем стандарт sRGB (используется в Blu-ray, HDTV, для Интернет и пр.).

Да, светодиоды и лазеры - это не лампы, которые пользователь может легко взять и заменить. Эти источники света сильно интегрируются в конструкцию проектора, в его «оптический движок». Давайте посмотрим, почему. Существует множество способов использования светодиодов и лазеров. Итак,

Полупроводниковые источники света в проекторе и их варианты:

1. Белые светодиоды. Это похоже на лампу - у нас есть белые светодиоды, их свечение разделяется на красный, зеленый и синий, как у ламп… В практике встречается редко.

2. RGB светодиоды. У нас изначально три цветных источника света - не нужно ничего разделять - компактность! К тому же можно добиться высокой насыщенности цветов. Часто используется в миниатюрных проекторах в сочетании с одноматричной DLP технологией.

Иллюстрация работы RGB LED проектора от NEC

3. Синий лазер + желтый люминофор. Популярно у дорогих домашних лазерных проекторов (JVC, Epson, Sony?). Синий лазер дает синий цвет, второй синий луч активирует желтый люминофор, а уже этот желтый цвет потом делится на красный и зеленый. Ниже - пример использования с LCoS технологиями:



Схема Epson LS10000


Схема примерно того же у JVC

А вот пример использования с одноматричной DLP технологией (BenQ):

4. Светодиодно-лазерные проекторы («гибридные проекторы»). Активно используется Casio. Итак, мы хотим RGB светодиодный проектор, но надо чем-то заменить неяркий зеленый светодиод. Ставим вместо зеленого светодиода синий лазер (зеленый лазер дорого), который активирует зеленый люминофор. Получаем яркость, близкую к ламповым проекторам (и, кстати, аналогичный зеленый оттенок в ярком режиме).

Схема гибридного проектора с сайта Casio.
Колесо с люминофором должно вращаться, чтобы пропускать синий,
либо производить зеленый цвет!

5. RGB лазерный проектор. Все на высшем уровне: превосходные цвета, высокая яркость, высокая цена, большой размер.


Иллюстрация устройства RGB-лазерного проектора от NEC
отмечено, что трубы - из оптоволокна

Среди качеств лазерных проекторов, используемых на практике - гибкое и плавное управление источником света с возможностью полного затемнения на темных сценах фильма, либо ограничения яркости проектора, ведущего к увеличению ресурса лазера. Если в проекторе используется массив лазеров, то даже по истечении их ресурса, лазеры будут выходить из строя по очереди , а не все сразу, что в худшем случае приведет к постепенному снижению яркости.

Тем не менее, говоря о лазерных и светодиодных проекторах, приходится констатировать, что 20000 и 30000 часов - это цифры, относящиеся к самому источнику света, а в конструкции могут иметься и другие элементы, которые могут обладать совершенно другим ресурсом. В итоге полезно смотреть на официальный срок гарантии производителя...

Что касается люминофоров, то они, очевидно, имеют свои характеристики, если говорить о цветопередаче. Как правило, на практике насыщенность цвета у люминофора значительно меньше, чем можно добиться от лазера/светодиода.

Можно ли получить широкий цветовой охват у лампового проектора?

В принципе, да. Для получения более широкого цветового охвата нужно с помощью цветофильтров отсечь лишние участки спектра. Собственно, если мы можем выделить из белого красный, то почему бы не выделить более чистый красный? Правда, потери света увеличатся, но кто их считает, когда речь идет о дорогих проекторах?

Компания CANON была образована в 1937 году, и очень скоро стала известна как производитель качественной фототехники. На рынок профессиональных инсталляционных проекторов компания вышла относительно недавно, но уже сейчас во многих проектах используются созданные на базе технологии LCOS проекционные решения CANON. Об этой технологии, о самых интересных моделях линейки XEED, а также о кейсах, в которых «засветились» проекторы производителя, рассказывает специалист компании по проекторам Алексей Макаров.

С чего началась история проекторов CANON?

Проекционные линзы CANON начала производить в 1990 году, и это стало логичным шагом в развитии компании, производящей объективы. Ведь проектор, по сути, это фотоаппарат наоборот: в фотоаппарат свет попадает извне и через линзы фокусируется на матрице, а в проекторе картинка появляется внутри и через объектив фокусируется на экране.

Технология LCоS (Liquid Crystal on Silicon - жидкие кристаллы на кремниевой подложке), была разработана корпорацией JVC.

Принцип работы LCoS-проектора близок к 3LCD, но LCoS использует не просветные ЖК-матрицы, а отражающие. На подложке LCoS-кристалла расположен отражающий слой, поверх которого находится жидкокристаллическая матрица и поляризатор. Под воздействием электрических сигналов жидкие кристаллы либо закрывают отражающую поверхность, либо открываются, позволяя свету от внешнего источника отражаться от зеркальной подложки кристалла.

К преимуществам технологии LCOS относят:

  • Больший коэффициент полезного заполнения рабочего пространства матрицы. Поскольку в LCoS управляющие элементы размещены за светоотражающим слоем, они не препятствуют прохождению света, в отличие от просветных LCD-матриц, что уменьшает «сетчатость» изображения и минимизирует «эффект гребёнки». Расстояние между элементами матрицы составляет всего несколько десятков мкм и коэффициент заполнения выше, чем у LCD-и DLP.
  • LCoS-чипы более устойчивы к мощному излучению чем DLP- и LCD-матрицы, так как все элементы размещены на охлаждающей подложке.
  • LCoS опережает LCD и DLP по максимально доступному разрешению.
  • LCoS обеспечивает более глубокий чёрный цвет и более высокую контрастность, чем LCD.
  • Время отклика жидких кристаллов матрицы LCoS меньше, чем у кристаллов, используемых в просветных матрицах в LCD-технологии.

Что инновационного CANON привнесла в свои продукты, учитывая, что разработкой собственно проекционной технологии занимались сторонние производители?

Прежде всего, хорошую оптическую систему – объективы. К технологии LCOS мы добавили лучшее светопрохождение как во внутреннем тракте, так и снаружи и, кроме того, сам LCOS (его улучшенный вариант, называемый AISYS) также делаем мы. Слово XEED обозначает название линейки проекторов, и если модель маркирована таким образом, можно быть уверенным в том, что внутри проектора – настоящий LCOS и настоящие технологии CANON. Еще один немаловажный момент: LCOS-проекторы всегда очень маленького размера, что позволило нам сделать одни из самых компактных 4К-проекторов в мире.

Что особенного в оптике проекторов CANON ?

В проекционных устройствах хорошая оптика имеет огромное значение. В ряде объективов проекторов CANON используются настоящие асферические линзы и настоящая низкодисперсионная оптика, что позволяет получить глубину резкости, значительно лучшую фокусировку на всей площади экрана и возможность проецировать изображения на сложных поверхностях, а не только на плоских экранах. Также дорогие объективы могут искоренить такие неприятные явления как хроматические аберрации, когда по краям кадра видно некоторое расслоение по цветам, связанное с прохождением света по краям линзы.

Если же мы говорим о 4К-проекторах, то в них можно делать и так называемую «периферическую фокусировку». Это важно для таких объектов как, скажем, авиационные симуляторы, где используются изогнутые экраны. Здесь в фокусе должны быть и края экрана, и центр, а 4К-проекторы CANON имеют очень хитрые несъемные объективы, позволяющие делать сложную периферическую фокусировку. Это именно оптическая система, а не софтверные возможности. Проекторы XEED технологии LCOS позиционируются как инсталляционные и потому все модели этой серии подходят для создания мультипроекций: они легко справляются с геометрическими искажениями.

Из других преимуществ, я бы отметил еще малый вес: 4К-проектор весит около 17 килограммов и является одним из самых маленьких в мире. Поэтому если есть бюджет чуть больше, чем на стандартный DLP, и не требуются огромные люмены, LCOS-проекторы могут быть использованы с большим успехом.

Расскажите о моделях проекторов для мультипроекций

Примеры использования проекторов Canon для мультипроекции

На внутреннем мероприятии Canon в Австрии: сшивка из 8 проекторов с проекцией панорамы города на большой экран при высокой освещенности

В авиасимуляторах

Смотровая площадка A’DAM Toren, Амстердам, Нидерланды: два проектора светят на модель города Амстердама. Это обычный видео-мейпинг, там рассказана его история, показаны достопримечательности, все это замечательно выглядит.

Передвижной планетарий в Германии (совместно с AV Stumpfl).

Музей истории города Боровичи, Боровичского края: два проектора показывают на экране в 3D различные артефакты.

Музейный комплекс «Куликово поле» (Тульская область, село Монастырщино). Крупнейший проект 2016 года, удостоенный специального приза ProIntegration Awards 2016

На сегодняшний день наиболее актуальны две модели: WUX6010 и совсем недавно вышедшая WUX6500 – представитель седьмого поколения наших инсталляционных проекторов с технологией LCOS, моторизованным зумом, сдвигом объектива, фокусом и возможностью выбора одного из пяти сменных объектов. Функция сшивки также встроена в проекторы, и работать с этой опцией предельно просто: вы задаете область кадра и выбираете в меню толщину перекрытия. В общем-то, все. То есть для простых инсталляций можно просто взять два проектора и нажатием кнопки в меню быстренько их сшить. Для более сложных проектов потребуется некий софт, но в любом случае с проекторами такого класса можно делать замечательные мультипроекции, и у нас есть масса примеров подобных инсталляций: это и сшивка из 8 проекторов на внутреннем мероприятии Canon, и смотровая площадка A’DAM Toren, где два проектора светят на макет города Амстердам и при помощи видеомэппинга рассказывают историю нидерландской столицы, показывают ее главные достопримечательности, и передвижной планетарий в Германии, где проекторы CANON используются вместе с дополнительным оборудованием и софтом.

В России наш партнер, компания A3V активно использует наши проекторы в различных музейных инсталляциях: в Музее истории города Боровичи, в Музейном комплексе "Куликово поле". Последний стал в прошлом году крупнейшим для компании CANON проектом и был удостоен специального приза ProIntegration Awards 2016. Всего в этом проекте используется около 30 наших проекторов, в том числе и WUX6010.

Сколько стоят подобные инсталляционные устройства?

WUX6010 стоит в розницу 350 тысяч рублей без объектива. Стоимость последнего начинается от 47 тысяч. Более компактный вариант XEED WUX500, который оснащен теми же технологиями, что и его старший брат, но с несъемным объективов с зумом 1,8Х стоит 350 тысяч рублей вместе с линзой. Здесь фокусировку, зум и сдвиг линзы нужно будет делать вручную, и в этом – основное отличие двух этих моделей, но если вы смиритесь с необходимостью все настроить вручную, то за эту сумму получите профессиональный инсталляционный проектор весом всего около 6 кг. Его можно взять с собой в сумке и легко разместить в салоне самолета.

Есть ли в линейке проекторов CANON короткофокусные устройства?

Конечно, ведь они очень удобны. В портфеле CANON нет очень ярких проекторов, и когда есть возможность вместо дорогого яркого проектора, который устанавливается далеко от экрана, использовать более дешевый короткофокусный, мы всегда напоминаем об этом заказчику: и кабель экономится, и свет не бьет в глаза, и можно использовать для обратной проекции, когда за экраном не много места. В линейке CANON есть короткофокусный проектор WUX450ST со сложной линзой без зума. Его Стоимость составляет 500 тысяч рублей, но он не зря стоит таких денег, потому что сфера его применения невероятно широка. Кстати, на выставке ISE 2017 я первый раз увидел специально изготовленный для этого проектора стол: проектор крепился под столешницу и отображал картинку на том уровне, на котором люди привыкли ее видеть.

Дело в том, что у этого проектора огромный сдвиг линзы по вертикали, и эта его функция в некотором роде уникальна. Изображение не искажается, не расфокусируется, что открывает огромные возможности: проектор можно крепить под стол и показывать картинку сверху, или крепить под потолок и опустить картинку вниз. Геометрию вывести тоже несложно.

В проекте компании A3V Музей "Куликово поле", можно увидеть временную шкалу, обозначающую различные исторические события, происходившие на Руси на протяжении веков. На первый взгляд кажется, что все изображение на стене формируется при помощи двух проекторов, но на самом деле есть и третий, который скрыт снизу. Благодаря большому сдвигу линзы изображение сведено по геометрии без каких-либо проблем.

Примеры использования проектора WUX450ST

В городе Утрехт, возле Амстердама, недавно , где все, кроме еды, является проекцией. Она повсюду: на стенах, на столе, и даже на посетителях. Проекторы размешены под потолком, а к столам прикручены механизмы, которые иногда заставляют столы трястись, большой вентилятор тоже создает определенный эффект. В комплексе все это – такой своеобразный 3D-ресторан. Здесь использовано огромное количество короткофокусных проекторов именно потому, что мало места и нельзя светить людям в глаза. Со своей задачей устройства CANON справляются отлично.

ISE2015: совместная инсталляция с AV Stumpfl - большое количество проекторов под потолком, которые засвечивают большую поверхность пола и стен. Все это ярко, красочно и при этом достаточно бюджетно.

Музей художественной культуры Новгородской земли (в процессе построения экспозиции). Под потолком 10 короткофокусных проекторов Canon

Что интересного было на стенде CANON на ISE 2017?

Я бы выделил одну из инсталляций: рядом с большим экраном было установлено специальное зеркало, на которое проецировал изображение наш лазерно-фосфорный проектор. Зеркало отображало картинку на огромный экран, позволяя зрителю ощутить себя в самой гуще событий: перед его взором вырастали разные изображения, панорамные фотографии и прочее. Выглядело впечатляюще и инновационно.



И еще хотелось бы рассказать об инсталляции, созданной совместно с компанией "Энфитек". Ими разработан особый вид пассивного 3D: это специальные фильтры, которые ставятся либо внутрь линзы проектора, либо непосредственно перед ней. Для просмотра изображения используются специальные пассивные очки. На инсталляции на нашем стенде была сделана обратная проекция с использованием двух 4К-проекторов, установленных за экраном, которые при помощи фильтров "Энфитек" показывали настоящее 4К 3D-изображение с рендерингом в реальном времени. Все вместе это было призвано вызвать интерес к использованию проекторов с высоким разрешением во всякого рода проектах визуализации. Кстати, LCOS-проекторы чаще всего используются для пассивного 3D.

Где можно приобрести проекторы Canon?

Одним из самых больших и активных наших дистрибьюторов является компания "Мерлион", у которой всегда есть складской запас оборудования. Также оборудование CANON можно приобрести в компания A3V – это интегратор, который занимается оборудованием музеев, и у нашего нового партнера, компании "Аскрин".

Еще один наш дистрибьютор находится в Перми, это компания "Аудиовизуальные системы", которая занимается большими, серьезными проектами – авиасимуляторами, планетариями – и накопила огромный опыт в этом нелегком деле. Поэтому, если у вас сложные проекты и много технических вопросов, с ними вы вполне можете сотрудничать.

Я с удовольствием отвечу на ваши вопросы лично, в офлайне, по телефону или по электронной почте. Так что пишите, пообщаемся.

В данной статье я попробую рассказать о технологиях проекторов в три шага. С моей точки зрения, понять достоинства и недостатки каждой технологии проще, если разделить для себя с самого начала три компонента, три пункта, из которых состоит «технология проектора»:

1. Технология формирования изображения - каким образом свет лампы проектора превращается в цветную картинку?
1.1. Используется ли в проекторе одна или три матрицы?
1.2. Технология матрицы (DLP, LCD, LCoS)

2. Технология источника света - источник света должен быть ярким, долговечным, излучать подходящий спектр, легко заменяться, что еще?.. Быстро включаться и выходить на нужую яркость, быть экономичным, не греться… Стоить недорого… Но так не бывает, чтобы все сразу. Так что выбрать - лампы? Светодиоды (LED)? Лазер? Каждый вариант обладает своими плюсами и минусами и хорош для определенных задач.

Одноматричные и Трехматричные проекторы

Есть два основных подхода к созданию проектора: трехматричный и одноматричный :

Но для начала давайте уточним, в чем смысл матрицы. Собственно, функция матрицы состоит в том, что каждая ее точка либо пропускает, либо блокирует свет, поэтому матрица способна формировать только одноцветное изображение, например черно-белое или черно-зеленое, если светить на нее зеленым фонариком.

В этом состоит небольшое отличие матриц проекторов от матриц телевизоров и мониторов, у которых одна матрица дает цветное изображение. Посмотрите на фотки и спросите себя, что будет смотреться лучше на большом экране?

На большом экране изображение справа будет выглядеть очень… сомнительно. Это - одна из причин, по которой в серьезных проекторах не используются цветные матрицы.

Увеличив фотографию справа, мы увидим, что каждая точка состоит из трех светящихся полосок, красной, синей и зеленой. Издалека эти полоски сливаются друг с другом, образуя тот или иной цвет по принципу RGB смешения:

Но по эстетическим соображениям трехцветные матрицы не применимы в проекторах, поскольку нам нужна картинка, как на изображении слева, с монолитными квадратными пикселями. Правда, есть еще одно соображение - это исключительно высокие температуры, воздействию которых подвергается матрица проектора при прохождении через нее светового потока лампы. Обычная LCD матрица этого не выдержит...

Итак, возвращаемся к основной теме. Мы поняли, что нужна матрица с монолитными квадратными точками, а такая матрица заведомо является одноцветной. Но мы можем создать три отдельных изображения и, наложив их друг на друга, получить желаемый результат:

Совместить три изображения мы можем внутри проектора, если у нас одновременно используется три матрицы. Либо мы можем схитрить и совместить три изображения уже на экране . Точнее, мы можем проецировать их по очереди на экран, а в голове у зрителя они объединятся в цветное:

Здесь лежит корень различий между технологиями проекторов. Давайте перечислим очевидные особенности одноматричного и трехматричного подходов:

1.Одноматричный проектор использует одну матрицу вместо трех. Значит, эта матрица может быть более сложной или дорогой, либо же проектор будет дешевле.

2. Также, компактный проектор проще делать на базе одноматричной технологии.

3.Трехматричный проектор использует три цвета из спектра белого, одноматричный в каждый момент времени - только один, а остальное отсекается. Это означает низкую эффективность использования светового потока лампы. Другими словами, это означает недостаточную яркость.

4. В зависимости от скорости смены кадров, в определенных условиях зритель может заметить цветные компоненты изображения у одноматричного проектора. Это называется «эффектом разделения цветов» или "эффектом радуги ". Изображение трехматричного проектора в этом смысле будет безупречным.

Ниже - «эффект радуги» в его худшем виде:

5. У трехматричного проектора матрицы надо точно подогнать друг к другу. Если этого не происходит, то уменьшается точность границ отдельных пикселей. У одноматричного проектора пиксель будет иметь идеально точную форму и зависеть только от оптики проектора.

Я не утверждаю, что все перечисленные выше пункты обязательно присущи каждому проектору, построенному на базе одноматричного или трехматричного подхода, однако они обозначают те проблемы и возможности, с которыми имеют дело создатели проекторов.

В более дорогих ценовых сегментах и особенно - у High End проекторов, многие недостатки преодолены и все зависит скорее не от технологии, а от «прямых рук».

Однако, в бюджетном сегменте, - в бизнес-проекторах, проекторах для образования и недорогих домашних проекторах, особенности технологий проявляются более остро. Основные две технологии, воюющие за бюджетный сегмент - это одноматричные DLP проекторы и трехматричные LCD (3LCD) проекторы. В более дорогих сегментах добавляются трехматричные LCoS (они же SXRD, они же D-ILA и пр.) и трехматричные DLP.

Поняв отличие между одноматричным и трехматричным проектором, перейдем к типам матриц. В конце концов, технологии именуются в честь матриц (DLP, 3LCD и пр.).

DLP проекторы

Когда говорят о DLP проекторах, имеют в виду одноматричные DLP проекторы, если иное не оговорено. Это - большинство проекторов различных производителей, которые мы можем встретить в продаже. Сама матрица DLP проектора именуется DMD чипом (англ. «Цифровое Микрозеркальное Устройство»), производится американской компанией Texas Instruments. Как следует из названия, DMD матрица состоит из миллионов зеркал , способных поворачиваться, занимая одно из двух фиксированных положений.

Таким образом, каждое зеркало либо отражает свет лампы на экран, либо на светопоглотитель (радиатор) проектора, давая белую или черную точку на экране:

Многократно переключаясь с черного на белое, мы получаем оттенки серого на экране:

Full HD DMD чип содержит 1920 * 1080 = 2 073 600 микрозеркал.

Как ранее говорилось, одноматричный проектор в каждый момент времени выводит на экран только один цветной компонент изображения:

Для выделения отдельных цветов из белого света лампы используется вращающееся колесо с цветофильтрами («цветовое колесо»):

Цветовое колесо может иметь различную скорость вращения, чем она выше - тем менее заметен будет характерный для одноматричных проекторов «эффект радуги». Цветовое колесо может состоять из сегментов-фильтров различного цвета, помимо красного, зеленого и синего могут использоваться дополнительные цвета. К примеру, RGBRGB колесо будет состоять из красного, зеленого и синего компонентов. На фотографии ниже - колесо RGBCMY (Красный, Зеленый, Синий, Циан, Маджента, Желтый):

Вот так в реальности выглядит оптический блок DLP проектора:

На последней фотографии можно увидеть небольшой прозрачный сегмент цветового колеса. Прозрачный сегмент (если он есть) позволяет пропускать белый свет лампы, усиливая черно-белую яркость изображения.

Это позволяет решить проблему неэффективности одноматричного подхода, не устанавливая более мощную лампу. Это особенно полезно для ярких офисных проекторов, однако при этом яркость черно-белого компонента изображения оказывается существенно выше яркости цветного компонента изображения , - на максимальной яркости цвета могут оказаться более темными, блеклыми. Хотя этот метод является популярным и используется в большинстве DLP проекторов, он не является непременным свойством каждого DLP проектора или DLP технологии.

Сравнительные преимущества и недостатки одноматричных DLP проекторов рассматриваются в сравнении с аналогичными 3LCD проекторами, поэтому я перечислю их в разделе .

Однако, сразу имеет смысл обозначить, что DMD чип, благодаря зеркальному, отражательному принципу работы, позволяет лучше отсекасть свет, что дает высокую контрастность , или «глубокий черный». У некоторых DLP проекторов работа DMD чипа с его постоянным переключением зеркал сопряжена с возникновением небольших шумов на экране или уменьшением числа градаций цветов (плавности цветовых переходов).

Трехматричныее DLP проекторы используются, как правило, в дорогих инсталляционных или домашних моделях и полностью лишены большинства недостатков, с которыми связывают DLP технологию («эффект радуги», низкая энергоэффективность/низкая яркость цветов), при этом обладая свойственной DMD чипу высокой контрастностью.

3LCD Проекторы

3LCD технология создана компанией Epson, хотя используется в проекторах некоторых других известных производителей, включая Sony.

Название подсказывает нам, что в проекторах на базе технологии 3LCD используются три жидкокристаллические матрицы , которые одновременно работают с красным, зеленым и синим потоками света, выводя на экран «честное» цветное изображение.

Схема работы 3LCD проектора:

В 3LCD проекторах в качестве источника света используется лампа, свет которой изначально разделяется специальными фильтрами на три компонента. Но сердце проектора - это три матрицы, примыкающие к призме, в которой три потока света снова объединяются, другими словами, три цветных компонента изображения совмещаются в мтоговое цветное, которое и выводится на экран.

Белый цвет также формируется смешением красного, зеленого и синего, что исключает дисбаланс по яркости между черно-белым и цветным компонентами изображения, что позволяет производителям заявляеть о более высокой «цветовой яркости».

При прочих равных, работающая на просвет LCD матрица отсекает лишний свет несколько хуже, чем зеркальный DMD чип, что дает несколько меньшую контрастность по сравнению с DLP проекторами. Также стоит отметить, что, в отличие от DMD зеркального чипа, LCD матрицы могут быть в полузакрытом положении, пропуская больше или меньше света. Им не надо переключаться туда-сюда.

В более дорогих проекторах для домашнего кинотеатра используется модификация 3LCD матриц под обозначением C2Fine, дающая контрастность, достаточную для High-End сегмента домашнего кинотеатра.

3LCD против DLP

Здесь речь пойдет о сравнении технологий, одноматричной DLP и 3LCD, с точки зрения их применения в «ламповых» проекторах бюджетной и средней ценовых категорий. У более дорогих проекторов многие недостатки технологий могут оказаться в достаточной мере сведенными на нет, поэтому сравнивать лучше конкретные модели.

При этом, я предлагаю выделять две области применения проекторов: в затемненном помещении, либо при свете. Дело в том, что в затемненном помещении от проектора не требуется высокой яркости - может быть достаточно менее 1000 Люмен. Однако, в темноте очень важную роль играет контрастность изображения, «глубина черного». В освещенном помещении от проектора требуется высокая яркость, высокая контрастность не дает никаких преимуществ. Почему - написано в .

Яркость vs Цветопередача. Как было показано ранее, одноматричные DLP проекторы в каждый момент времени используют только один цвет, «выкидывая» остальное.


Это в меньшей степени создает проблему для проекторов, предназначенных для затемненных помещений, где не требуется слишком высокой яркости. Однако, для офисных проекторов, образования и пр., это создает проблему. Так как проектор обязан обладать высокой яркостью, а использование более мощной лампы приведет к удорожанию проектора, увеличению его шумности и пр., то обычно недостаточная яркость компенсируется установкой прозрачного сегмента цветового колеса. В результате этого создается дисбаланс: яркое черно-белое изображение и при этом темные цвета . У 3LCD проекторов этой проблемы нет, в связи с чем производители заявляют о высокой «цветовой яркости» 3LCD проекторов. А яркость является одной из трех базовых характеристик цвета (наряду с оттенком и насыщенностью) и важна для правильной цветопередачи.

Контрастность. Микрозеркала DLP проектора позволяют эффективнее отсекать ненужный свет, создавая глубокий уровень черного. У DLP проекторов обычно бывает более глубокий чёрный, чем у 3LCD проекторов (кроме более дорогих моделей для домашнего кинотеатра). Это играет существенную роль в затемненном помещении и не играет никакой роли при свете.

«Эффект радуги». Данный эффект может возникать на одноматричных DLP проекторах (см. описание DLP технологии), на контрастных сценах. Его заметность напрямую зависит от скорости вращения цветового колеса. «Эффект радуги» обычно обнаруживается при быстром перемещении взгляда с одного объекта на экране на другой.


Имитация «эффекта радуги»

Второстепенные Особенности

«Москитная сетка» (screen door effect). У DLP матриц управляющие элементы располагаются под зеркалами , тогда как у 3LCD матриц они занимают некоторое пространство вокруг пикселя, формируя небольшой зазор между пикселями. Фанаты DLP технологии заявляют, что в результате 3LCD проекторы демонстрируют оконтовку отдельных точек, создающую эффект смотрения через москитную сетку. На мой взгляд, значение этого эффекта преувеличено. Прежде всего, как 3LCD, так и DLP проекторы могут обладать данным эффектом, зачастую прямое сравнение бок о бок не обнаруживает никакой разницы. У дорогих проекторов для домашнего кинотеатра могут использоваться специальные методы для ликвидации видимой границы между пикселями.

Прямое сравнение случайных офисных проекторов

Плавность цветовых переходов. Данная особенность имеет отношение к управлению DMD чипом DLP проектора. Некоторые недорогие DLP проекторы могут отображать резкие переходы цветов («эффект постеризации»), при отображении одноцветного поля может быть заметен цифровой шум. Тем не менее, это - особенность отдельных проекторов, а не технологии в целом.

Несведениие пикселей. У всех трехматричных проекторов, включая 3LCD, может проявляться не идеальное совмещение точек трех матриц. В этом случае точки на экране окажутся слегка размытыми, менее четкими. При прочих равных, использование единственной матрицы дает DLP проекторам более четкие пиксели. Однако, зачастую это преимущество остается не реализованным из-за использования недорогой оптики.

Отсутствие противопылевых фильтров. У DLP проекторов запечатан оптический блок, что предотвращает попадание в него пыли. В результате, большинство производителей DLP проекторов не используют воздушные фильтры, заявляя это, как преимущество. Данный вопрос является неоднозначным. С одной стороны, производители DLP проекторов заявляют, что для очистки фильтра нужен кто-то, кто будет этим заниматься в вашей организации. С другой стороны, существуют DLP проекторы популярных марок с фильтрами, а в руководстве пользователя некоторых DLP проекторов рекомендуется периодически пылесосить вентиляционные отверстия и пр. В любом случае, герметичность оптического блока не означает, что от пыли защищены остальные узлы проектора, такие как лампа и платы.

Компактность. Использование всего одного чипа позволяет производить мини-проекторы и пико-проекторы на базе DLP технологии. Особенно - в сочетании со светодиодным источником света.

Технология LCoS

Еще одна технология, используемая преимущественно в более дорогих проекторах.

LCoS («Жидкие Кристаллы на Кремнии») – своеобразный гибрид 3LCD и DLP технологий. Многие компании имеют собственные обозначения для своих вариантов этой технологии проекторов: у Sony - SXRD, у JVC - D-ILA, у Epson – «reflective 3LCD» (отражающий 3LCD).

«Отражающий 3LCD», пожалуй, отлично иллюстрирует принцип работы LCoS. Представьте себе 3LCD проектор, в котором слой жидких кристаллов расположен поверх отражающего слоя:


Условно говоря, LCoS матрица - это LCD матрица, приклеенная к зеркалу. Одно из преимущест такого подхода в том, что свет вынужден проходить через LCD матрицу два раза, что позволяет лучше отсекать лишний свет, увеличивая контрастность. Как и у DLP матрицы, управляющие элементы расположены под матрицей, но при этом у LCoS матрицы нет движущихся элементов, что позволяет практически полностью избавиться от зазора между пикселями - никакого «эффекта москитной сетки».

Если с точки зрения расположения матриц и пути света 3LCD проектор выглядел следующим образом:

то LCoS будет устроен чуть сложнее из-за отражающего характера матриц:


LCoS против Всех

Технология LCoS изначально задумана, как сочетание преимуществ 3LCD и DLP технологий, но без их недостатков.

Однако, так как LCoS проекторы обычно относятся к довольно дорогим, например - к High-End домашним проекторам, то на этом уровне цен и DLP и 3LCD проекторы будут совершенно другого уровня, в них будет реализован ряд решений, позволяющих в значительной мере избавиться от изначальных недостатков технологий. К примеру, 3LCD матрицы C2fine дают контрастность high-end уровня, а массив микролинз позволяет в значительной степени убрать промежутки между пикселями. А DLP проектор может просто оказаться трехматричным.

В итоге, сложно говорить о конкретных преимуществах той или иной технологии в дорогом сегменте, где важна каждая мелочь.

Источники Света: Лампы

UHP ртутные ламы являются традиционным источником света для проекторов. Они сочетают низкую стоимость и простоту замены с высокой яркостью, а их приблизительный ресурс работы составляет в среднем от 3000 до 5000 часов в режиме максимальной мощности. Как правило, мощность устанавливаемых в проектор ламп составляет 200 Вт и более. В приведенном выше описании технологий предполагалось, что в качестве источника света используются UHP лампы.

Лампа дает поток белого цвета , который необходимо разделить на красный, зеленый, синий и пр. потоки с помощью специальных цветофильтров, которые используются как в 3LCD проекторах, так и в цветовом колесе DLP проекторов. При этом, UHP лампы изначально дают не идеально белый цветовой оттенок. Как правило, он зеленоват. Чтобы компенсировать этот оттенок и сделать свет лампы идеально белым, используются как оптические фильтры, так и корректировка с помощью матриц проектора, путем ограничения яркости зеленого.

В этом и заключается причина, по которой у классических проекторов имеется «Яркий» («Динамический») и «Точный» («Кино») режимы изображения: в ярком оттенок изображения зеленоват, но в нем достигается максимальная яркость, а в точном зеленый оттенок убран ценой существенного снижения яркости. Все это, конечно, не имеет никакого отношения к особенностям LCD или DLP технологий.

Одним из недостатков UHP ламп является высокая температура работы, требующая интенсивного охлаждения. Лампе требуется некоторое время, чтобы выйти на оптимальную яркость. Еще один момент - яркость лампы может снижаться с течением времени.

Тем не менее, лампы представляют собой проверенный, прогнозируемый, качественный, яркий, недорогой источник света, который в ближайшее время нас не покинет.

Отдельно следует упомянуть ксеноновые лампы . Они мощнее, дороже и менее эффективны, зато обладают изначально более правильным балансом белого и исключительно ровным спектром излучения, позволяющим добиться более качественной цветопередачи. Такие лампы хорошо подходят для High-End проекторов.


Сравнение спектров излучений ртутной и ксеноновой ламп

Источники Света: LED и Лазер

Мы переходим к полупроводниковым источникам света (светодиоды и лазеры). Характерная их особенность в том, что что они могут обладать исключительно узким спектром излучения, что дает чистые, насыщенные цвета, которые не нужно выделять из белого спектра специальными фильтрами. Эта особенность будет особенно важна в эпоху новых стандартов видео, таких как Ultra HD, требующих отображения предельно чистых цветов.

Упрощенно говоря, разница между лазерными и светодиодными источниками света состоит в их мощности и стоимости. Лазерные проекторы мощнее, но стоимость изготовления самих лазеров довольно высока, особенно - зеленого. Светодиодный источник света не так дорог, хотя его яркость обычно ограничена 500-700 Лм, причем слабым звеном с точки зрения яркости является зеленый светодиод.

В итоге, лазерные проекторы используются, в основном, в более дорогих домашних проекторах, тогда как светодиодные проекторы - это, в основном, миниатюрные модели, причем поголовно на базе одноматричной DLP технологии.

При использовании цветных светодиодов в таких проекторах, отпадает нужда в движущихся элементах наподобие цветовго колеса (светодиоды обладают мгновенным откликом):


Правда, существуют проекторы, в которых используются белые светодиоды. Такие проекторы своим устройством мало чем отличаются от ламповых.

Важным преимуществом полупроводниковых источников света является средний ресурс в 20 000 часов. Помимо этого, энергопотребление и температура такого источника света гораздо ниже, чем у ламп.

При всем вышесказанном, наличие светодиодного источника света не гарантирует ни бесшумности, ни реальных экономий на электроэнергии по сравнению с классическими UHP лампами - все зависит от конкретного проектора. Также следует помнить, что 5000 часов «обычной лампы» - это просмотр двухчасового фильма каждый день на протяжении почти 7 лет! Тоже немало.

В отличие от ламп, которые легко достать из проектора и заменить, полупроводниковые источники света вряд ли удастся заменить, не обращаясь в сервис-центр.

Гибридный Источники Света: LED/Лазер

Как было ранее сказано, LED источник света ограничен яркостью зеленого светодиода, а лазерный источник света ограничен дороговизной зеленого лазера. Одним из решений (используемых в проекторах Casio) является замена зеленого светодиода LED проектора синим лазером, светящим на зеленый люминофор . При этом, для излучения синего света используется синий светодиод, либо тот же синий лазер .

Если синий лазер используется и для синего и для зеленого, то без вращающегося цветового колеса никак не обойтись:

В случае с синим светодиодом все значительно проще:

Ресурс гибридных источников света обычно оценивается производителем в 20000 часов, как у лазеров и светодиодов, однако существуют сомнения, продержится ли этот срок сам зеленый люминофор и теряет ли он со временем яркость? Все-таки, старые-добрые лампы давно понятны и изучены, а здесь мы имеем дело с довольно новой технологией.

Еще один момент связан с тем, что чистота зеленого цвета, его насыщенность, будет определяться у гибридного проектора не лазером, а люминофором. Таким образом, такой проектор может отображать чистые красный и синий и при этом довольно слабонасыщенный зеленый.

Поэтому основным преимуществом гибридных проекторов считается именно долгий срок службы, который дает долгосрочную экономию по сравнению с ламповыми проекторами.

Является третьей по распространенности после технологий DLP и 3LCD (LCD) , но занимает значительно меньшую долю рынка.

Синонимами LCoS являются аббревиатуры D-ILA (англ. Direct Drive Image Light Amplifier ) компании JVC и SXRD (англ. Silicon X-tal Reflective Display ) компании Sony . D-ILA - официально зарегистрированный товарный знак компании JVC, который означает, что в данном продукте применена оригинальная разработка на основе дисплея выполненного по технологии LCoS, сетчатого поляризационного фильтра и ртутной лампы . D-ILA подразумевает трёхчиповое LCoS-решение. Также часто можно встретить аббревиатуру HD-ILA. SXRD - зарегистрированный торговый знак Sony для продукции, сделанной с использованием технологии LCoS.

Принцип технологии

Принцип работы современного LCoS-проектора близок к 3LCD, но в отличие от последней использует не просветные ЖК-матрицы, а отражающие. Так же, как и DLP-технологии, LCoS использует эпипроекцию вместо традиционной диапроекции, свойственной LCD.

На полупроводниковой подложке LCoS-кристалла расположен отражающий слой, поверх которого находится жидкокристаллическая матрица и поляризатор. Под воздействием электрических сигналов жидкие кристаллы либо закрывают отражающую поверхность, либо открываются, позволяя свету от внешнего направленного источника отражаться от зеркальной подложки кристалла.

Как и в LCD-проекторах, в LCoS-проекторах сегодня используются в основном трёхчиповые схемы на основе монохромных LCoS-матриц. Так же, как и в технологии 3LCD для формирования цветного изображения обычно используются три кристалла LCoS, призма , дихроичные зеркала и светофильтры красного, синего и зелёного цветов.

Тем не менее, существуют одночиповые решения, в которых цветное изображение получается использованием трех мощных цветных быстро переключаемых светодиодов, последовательно дающих свет красного, зеленого и синего цвета, такие решения выпускает фирма Philips . Мощность их света невелика.

В конце 1990-х годов компания JVC предлагала одночиповые решения на основе цветных матриц LCoS. В них световой поток разбивался на составляющие RGB непосредственно в самой матрице при помощи фильтра HCF (англ. Hologram Color Filter - голографический цветовой фильтр ). Эта технология получила название SD-ILA (англ. single D-ILA ). Также одноматричные решения разрабатывал и Philips.

Но одночиповые LCoS-проекторы не получили широкого распространения из-за ряда недостатков: трехкратные потери светового потока при прохождении фильтра, что в том числе накладывало ограничения по причине перегрева матрицы, невысокое качество цветопередачи, более сложная технология производства цветных LCoS-чипов.

История

Предыстория появления технологии

В 1972 в лаборатории Hughes Research Labs авиастроительной корпорации Говарда Хьюза Hughes Aircraft Company, которая в то время являлась центром самых передовых исследований в области оптики и электроники, был изобретен LCLV (англ. Liquid Cristal Light Valve - жидкокристаллический оптический модулятор). Впервые технология LCLV была использована для отображения информации на больших экранах в командных центрах управления ВМФ США. Тогда эти устройства могли отображать только статическую информацию.

Развитие технологии продолжалось и термин LCLV был заменен на англ. Image Light Amplifier (ILA) , как более подходящий.

ILA отличается от D-ILA тем, что управление жидкими кристаллами осуществляется с помощью фоторезиста , на который подается модулирующий луч, создаваемый электронно-лучевой трубкой.

В начале 1990-х компании Hughes и JVC решили объединить усилия по работе над технологией ILA. 1 сентября 1992 стало официальной датой образования совместного предприятия Hughes-JVC Technology Corp. Впервые коммерческий проектор на основе технологии ILA были продемонстрирован компанией JVC в 1993 году. В течение 1990-х годов было продано свыше 3000 таких проекторов.

Использование электронно-лучевой трубки в качестве модулятора изображения в устройствах ILA накладывало ограничения на разрешающую способность, габариты и стоимость устройства и требовала сложной юстировки оптических трактов. Поэтому JVC продолжает исследования для создания принципиально новой отражающей матрицы, которая решила бы эти проблемы, сохранив достоинства технологии. В 1998 году компания продемонстрировала первый проектор, сделанный по технологии D-ILA, в котором модулирующее изображение устройство в виде связки «луч ЭЛТ - фоторезист» заменено на управляющие КМОП -элементы, имплементированные в полупроводниковую структуру подложки - отсюда и название технологии «direct drive ILA» - ILA с прямым управлением. Иногда D-ILA расшифровывают как «digital ILA» (цифровой ILA), это не совсем верно, но так же правильно отражает суть изменений технологии D-ILA от управляемой аналоговым устройством (ЭЛТ) ILA.

Была и промежуточная, тоже уже цифровая, технология между ILA и D-ILA, не получившая распространения - FO-ILA, - где управляющая электронно-лучевая трубка была заменена пучком световодов на основе оптоволокна (Fiber Optic), которые передавали модулирующий сигнал с поверхности монохромного монитора.

Первая волна

Вторая волна

Philips

Sony

Первый SXRD-проектор (на основе чипа собственной разработки) компания Sony продемонстрировала в июне 2003 года. В следующем году Sony анонсировала проекционной телевизор на основе технологии SXRD. К 2008 году компания отказалась от выпуска всех проекционных телевизоров, включая модели на основе технологии SXRD. Но от выпуска проекторов компания не отказалась. Сегодня Sony выпускает проекторы для больших инсталляций и цифрового кино разрешением до 4096×2160 (на основе чипа -SXRD) и светосилой до 21 000