Радиоволны световые волны. Распространение радиоволн

РАСПРОСТРАНЕНИЕ РАДИОВОЛН - процесс передачи в пространстве эл--магн. колебаний радиодиапазона (см. Радиоволны ).В естеств. условиях Р. р. происходит в разл. средах, напр. в атмосфере, космич. плазме, в поверхностном слое Земли.

Общие закономерности распространения радиоволн . Скорость Р. р. в свободном пространстве в вакууме равна с. Полная энергия, переносимая радиоволной, остаётся постоянной, а плотность потока энергии убывает с увеличением расстояния r от источника обратно пропорционально r 2 . Р. р. в др. средах происходит с фазовой скоростью, отличающейся от с , и в равновесной среде сопровождается поглощением эл--магн. энергии. Оба эффекта объясняются возбуждением колебаний электронов и ионов среды под действием электрич. поля волны. Если напряжённость поля E гармонич. волны мала по сравнению с напряжённостью поля, действующего на заряды в самой среде (напр., на электрон в атоме), то колебания происходят также по гармонич. закону с частотой w пришедшей волны. Колеблющиеся электроны излучают вторичные радиоволны той же частоты, но с др. амплитудами и фазами. В результате сложения вторичных волн с приходящей формируется результирующая волна с новой амплитудой и фазой. Сдвиг фаз между первичной и переизлучёнными волнами приводит к изменению фазовой скорости. Потери энергии при взаимодействии волны с атомами являются причиной поглощения радиоволн .

Амплитуда волны убывает с расстоянием по закону а фаза волны изменяется по закону y = wt - (w/с)nr , где x - показатель поглощения, n - преломления показатель ; n и x зависят от диэлектрической проницаемости e среды, её проводимости s и частоты волн w:


гденаз. тангенсом угла потерь. Фазовая скорость u = с/n , коэф. поглощения Среда ведёт себя как диэлектрик , если и как проводник, еслиВ первом случае во втором -и волна затухает на расстояниях - толщина скин-слоя (см. Скин-эффект) . В среде e ц s являются ф-циями частоты (см. Дисперсия волн) . Вид частотной зависимости е и s определяется структурой среды. Дисперсия радиоволн особенно существенна в тех случаях, когда частота волны близка к характерным собств. частотам среды (напр., при Р. р. в ионосферной и космич. плазме, см. ниже).

При Р. р. в средах, не содержащих свободных электронов (тропосфера, толща Земли), происходит смещение связанных электронов в атомах и молекулах среды в сторону, противоположную полю волны Е , при этом n > 1, u Ф < с . В плазме поле волны вызывает смещение свободных электронов в направлении E , при этом n < 1 и u Ф > с, т. е. фазовая скорость монохро-матич. волны может быть как меньше, так и больше с . Однако для того чтобы передать при помощи радиоволн к--л. информацию (энергию), необходимо иметь ограниченный во времени радиосигнал, представляющий собой нек-рый набор гармонич. волн. Спектральный состав сигнала зависит от его длительности и формы. Радиосигнал распространяется с групповой скоростью u гр. В любой среде u гр < с .

В однородных средах радиоволны распространяются прямолинейно, подобно световым лучам. Процесс Р. р. в этом случае подчиняется законам геометрической оптики . Однако реальные среды неоднородны. В них п , а следовательно, и u Ф различны в разных участках среды, что приводит к рефракции радиоволн . В случае плавных (в масштабе l) неоднородности справедливо приближение геом. оптики. Если показатель преломления зависит только от высоты h , отсчитываемой от сферической поверхности Земли, то вдоль траектории луча выполняется условие

Соотношение (2) представляет собой Снелля закон преломления для сферическислоистой среды. Здесь R 0 - радиус Земли, f - угол наклона луча к вертикали в произвольной точке траектории. Если вместо действит. показателя преломления га ввести приведённый показатель преломления

то закон преломления (2) получит вид

Соотношение (4) наз. законом преломления Снелля для плоскослоистой среды.

Если n убывает при увеличении h , то в результате рефракции луч, по мере распространения, отклоняется от вертикали и на нек-рой высоте h m становится параллельным горизонтальной плоскости, а затем распространяется вниз (рис. 1, а). Макс. высота h m , на к-рую луч может углубиться в неоднородную плоскослоистую среду, зависит от угла падения f 0 и определяется из условия


Рис. 1. а - рефракция радиоволн в плоскослоистой среде с grad n < 0; б - зависимость квадрата амплитуды напряжённости электрического поля радиоволны от высоты h .

В область h > h m лучи не проникают, и, согласно приближению геом. оптики, волновое поле в этой области должно быть равно 0. В действительности вблизи плоскости h = h m волновое поле возрастает, а при h > h m убывает экспоненциально (рис. 1, б) . Нарушение законов геом. оптики при Р. р. связано также с дифракцией волн , вследствие к-рой радиоволны могут проникать в область геом. тени. На границе области геом. тени образуется сложное распределение волновых полей. радиоволн возникает при наличии на их пути препятствий (непрозрачных или полупрозрачных тел) и особенно существенна в тех случаях, когда размеры препятствий сравнимы с l.

Если Р. р. происходит вблизи резкой границы (в масштабе l) между двумя средами с разл. электрич. свойствами (напр., атмосфера - поверхность Земли или тропосфера - ниж. граница ионосферы для достаточно длинных волн), то при падении радиоволн на резкую границу образуются отражённая и преломлённая (прошедшая) радиоволны. Если отражение происходит от границы проводящей среды (напр., от поверхностного слоя Земли), то глубина проникновения в него определяется толщиной скин-слоя.

В неоднородных средах возможно волноводное распространение радиоволн , при к-ром происходит локализация потока энергии между определ. поверхностями, за счёт чего волновые поля между ними убывают с расстоянием медленнее, чем в однородной среде (атм. волновод). В средах с плавными неоднородностями локализация связана с рефракцией, а в случае резких границ - с отражением.

В среде, содержащей случайные локальные неоднородности, вторичные волны излучаются беспорядочно в разл. направлениях. Рассеянные волны частично уносят энергию исходной волны, что приводит к её ослаблению. При рассеянии на неоднородностях размером l l (т. н. рассеяние Рэлея; см. Рассеяние света )рассеянные волны распространяются почти изотропно. В случае рассеяния на крупномасштабных прозрачных неоднородностях рассеянные волны распространяются в направлениях, близких к исходной волне. При l ! l возникает сильное резонансное рассеяние.

Влияние поверхности Земли на распространение радиоволн определяется как электрич. параметрами e и s грунтов и водных пространств, образующих земную кору, так и структурой поверхности Земли, т. е. её кривизной и неоднородностью. Р. р.- процесс, захватывающий большую область пространства, но наиб. существ. роль в Р. р. играет область, ограниченная поверхностью, имеющей форму эллипсоида вращения, в фокусах к-рого A и B на расстоянии r расположены передатчик и приёмник (радиотрасса, рис. 2). Большая ось эллипсоида равнамалая ось определяется размерами первой Френеля зоны и Ширина трассы уменьшается с убыванием l. Если высоты z 1 и z 2 , на к-рых расположены антенны передатчика и приёмника над поверхностью Земли, велики по сравнению с l, то эллипсоид не касается поверхности Земли и она не влияет на Р. р. (рис. 2, а) . При понижении обеих или одной из конечных точек радиотрассы (или увеличении длины волны) поверхность Земли пересекает эллипсоид. В этом случае на Р. р. оказывают влияние электрич. параметры области поверхности Земли, ограниченной эллипсом сечения, вытянутым вдоль трассы. При сохранении условий и в точке приёма возникает между прямой и отражённой волнами (см. Интерференция волн ).Амплитуда и фаза отражённой волны определяются с учётом Френеля формул для коэф. отражения. Интерференционные максимумы и минимумы обусловливают лепестковую структуру поля, к-рая характерна для декаметровых и более коротких радиоволн. Если z 1 /l < 1 и z 2 /l < 1, то радиотрасса выделяет участок поверхности Земли, ограниченный эллипсом с осями r + l(p/4) и


Рис. 2. Эллипсоидальная область пространства, существенная при распространении радиоволн (радиотрасса); А - излучатель; В - приёмник.

Уменьшение напряжённости поля, а следовательно, и потока энергии, переносимого радиоволной вдоль поверхности Земли (земной волной) , обусловлено проводимостью поверхности в этой области. При P.p. вдоль проводящей поверхности возникает поток энергии, направленный в проводящую среду и быстро затухающий по мере распространения в ней. Глубина проникновения радиоволны в земную кору определяется толщиной скин-слоя и, следовательно, увеличивается с увеличением длины волны. Поэтому для подземной и подводной радиосвязи используются длинные и сверхдлинные радиоволны.

Рис. 3. Дальность "прямой видимости" r ограничена выпуклостью земной поверхности; R 0 - радиус Земли, z 1 , и z 2 , - высоты передающей А и приёмной В антенн соответственно.


Выпуклость земной поверхности ограничивает расстояние, на к-ром из точки приёма В "виден" передатчик А (область "прямой видимости", рис. 3). Однако радиоволны, огибая Землю в результате дифракции, могут проникать в область тени на большее расстояние(R 0 - радиус Земли). Практически в эту область за счёт дифракции могут проникать только километровые и более длинные волны (рис. 4).

Рис. 4 . График, иллюстрирующий связь дальности r распространения от величины W = 20lg|E/E * | , где E - напряжённость поля радиоволны в реальных условиях распространения с учётом огибания выпуклости земной поверхности (излучатель расположен на поверхности Земли); Е * - напряжённость поля для разных частот без учёта дифракции.


Фазовая скорость земных волн вблизи излучателя зависит от электрич. свойств. Однако на расстоянии в неск. l от излучателя u ф! с . Если радиоволны распространяются над электрич. неоднородной поверхностью, напр. сначала над сушей, а затем над морем, то при нересечении береговой линии резко изменяются амплитуда и направление Р. р. (береговая рефракция, рис. 5).

Рис. 5. Изменение напряжённости электрического поля волны при пересечении береговой линии.


Влияние рельефа земной поверхности на Р. р. зависит от высоты неровностей h , их горизонтальной протяжённости l , l и угла q падения волны на поверхность. Если неровности достаточно малы и пологи, так что kh cosq < < 1 (k - волновое число), и выполняется т. н. критерий Рэлея k 2 l 2 cosq < 1, то они слабо влияют на Р. р. Влияние неровностей зависит также от поляризации волн. Напр., для горизонтально поляризованных волн оно меньше, чем для волн, поляризованных вертикально. Когда неровности не малы и не пологи, энергия радиоволны может рассеиваться (радиоволна отражается от них). Высокие горы и холмы с h > l "возмущают" волновое поле, образуя затенённые области. Дифракция радиоволн на горных хребтах иногда приводит к усилению прямых и отражённых волн. Вершина горы служит естеств. ретранслятором. Это существенно при распространении метровых радиоволн в гористой местности (рис. 6).


Распространение радиоволн в тропосфере. Тропосфера - область атмосферы, расположенная между поверхностью Земли и тропопаузой, в к-рой темп-pa воздуха обычно убывает с высотой (в тропопаузе темп-ра с высотой увеличивается). Высота тропопаузы на земном шаре неодинакова, над экватором она больше, чем над полюсами, а в средних широтах, где существует система сильных западных ветров, изменяется скачкообразно. Тропосфера состоит из смеси нейтральных молекул и атомов газов, входящих в состав сухого воздуха, и паров воды. Диэлектрическая проницаемость, а следовательно, и показатель преломления газа, не содержащего свободных электронов и ионов, обусловлены дополнительными полями, создаваемыми смещением электронов в молекулах ( сухого воздуха) я ориентацией полярных молекул (пары воды) под действием электрич. поля волны.

Показатель преломления тропосферы

где p - давление сухого воздуха, е - давление водяного пара в миллибарах, Т - темп-pa. Показатель преломления не зависит от частоты и очень мало отличается от единицы. Так, у поверхности Земли с увеличением высоты происходит изменение параметров р, Т, е , определяющих значение показателей преломления. При нормальных метеорологич. условиях показатель преломления уменьшается с высотой:

Это приводит к искривлению траектории лучей. Для правильной оценки положения луча относительно поверхности Земли необходимо учитывать сферичность её поверхности, что можно сделать, вводя приведённый показатель преломления (3):

отличающийся от grad n не только по абс. величине, но и по знаку. В условиях нормальной тропосферной рефракции grad n пр > 0. В этом случае луч, вышедший из приподнятого над землёй излучателя под углом к вертикали, при распространении приближается к ней. При распространение лучей происходит в сторону уменьшающихся значений n пр. При этом, в зависимости от значений f 0 , луч может достигнуть поверхности Земли и отразиться от неё, достигнуть точки поворота, определяемой из условия (5), и при нек-ром значении угла f 0 точка поворота может лежать на поверхности Земли. В этом случае траектория луча является границей между областью, в к-рую могут попасть лучи, и областью тени. Нормальная тропосферная рефракция способствует увеличению области прямой видимости.

Метеорологич. условия существ. образом влияют на изменение показателя преломления, т. е. и на рефракцию радиоволн. Обычно в тропосфере давление воздуха н темп-pa С высотой уменьшаются, а давление водяного пара увеличивается. При нек-рых метеорологич. условиях, напр. при движении нагретого над сушей воздуха над более холодной поверхностью моря, темп-ра воздуха с высотой увеличивается, а давление водяного пара уменьшается (инверсия темп-ры и влажности). В этом случае показатель преломления изменяется с высотой не монотонно, т. е. dn пр /dh на нек-рой высоте может изменить знак. Если в интервале высот, определяемом толщиной слоя инверсии, то gradn np <0. В плоскослоистой среде с grad n пр < О лучи отражаются от высоты, определяемой из условия (5). В пространстве, ограниченном снизу поверхностью Земли, а сверху высотой, на к-рой dn пр /dh изменяет знак, возникают условия для волноводного распространения (рис. 7). В тропосферных волноводах, как правило, могут распространяться волны с l < 1 м.

Рис. 7. Траектории УКВ в тропосферном волноводе.


Поглощение радиоволн в тропосфере пренебрежимо мало для всех радиоволн вплоть до сантиметрового диапазона. Поглощение сантиметровых и более коротких волн резко увеличивается, когда частота волны w совпадает с одной из собств. частот колебаний молекул воздуха (резонансное поглощение). Молекулы получают от приходящей волны энергию, к-рая превращается в теплоту p только частично передаётся вторичным волнам. Известен ряд линий резонансного поглощения в тропосфере: l = 1,35 см, 1,5 см, 0,75 см (поглощение в парах воды) и l = 0,5 см, 0,25 см (поглощение в кислороде). Между резонансными линиями лежат области более слабого поглощения (окна прозрачности).

Ослабление радиоволн может быть также вызвано рассеянием на неоднородностях, возникающих при турбулентном движении воздушных масс (см. Турбулентность ).Рассеяние резко увеличивается, когда в воздухе присутствуют капельные неоднородности в виде дождя, снега, тумана. Почти изотропное рассеяние Рэлея на мелкомасштабных неоднородностях делает возможной радиосвязь на расстояниях, значительно превышающих прямую видимость (рис. 8). Т. о., тропосфера существенно влияет на распространение УКВ. Для декаметровых и более длинных волн тропосфера практически прозрачна, и на их распространение влияют земная поверхность и более высокие слои атмосферы.

Рис. 8. Рассеяние радиоволн на мелкомасштабных неоднородностях.


Распространение радиоволн в ионосфере. Ионосферу образуют верх. слои земной атмосферы, в к-рой газы частично (до 1%) ионизированы под влиянием УФ-, рентг. и корпускулярного солнечного излучения. Ионосфера электрически нейтральна, она содержит равное кол-во положит. и отрицат. частиц, т. е. является плазмой. Достаточно большая , оказывающая влияние на Р. р., начинается на высоте 60 км (слой D ), увеличивается до высоты 300-400 км, образуя слои Е. F 1 , F 2 , и затем медленно убывает. В гл. максимуме концентрация электронов N достигает 10 6 см -3 . Зависимость N от высоты меняется со временем суток, года, с солнечной активностью, а также с широтой и долготой. Ионизиров. слой между 200 и 400 км состоит в осн. из равного кол-ва ионов О + и электронов. Эти частицы погружены в нейтральный газ с концентрацией 10 8 см -3 , состоящий в осн. из частиц О 2 , О, N 2 и Не.

В многокомпонентной плазме, содержащей электроны, ионы и нейтральные молекулы и пронизанной магн. полем Земли (см. Земной магнетизм) , могут возникать разл. виды собств. колебаний, имеющих разные частоты. Напр., плазменные (ленгмюровские) частоты электронов и ионов ги-ромагн. частоты электронов и ионов где т, М - массы электрона и иона, е - их заряд, N - концентрация, Н 0 - напряжённость магн. поля Земли. Т. к. то . Напр., для электронов=1,4 МГц, а для ионов атомарного кислорода= 54 Гц.

В зависимости от частоты w радиоволны осн. роль в Р. р. играют те или др. виды собств. колебаний, поэтому электрич. свойства ионосферы различны для разных участков радиодиапазона. При высоких w ионы не успевают следовать за изменениями поля и в Р. р. принимают участие только электроны. Вынужденные колебания свободных электронов ионосферы происходят в про-тивофазе с действующей силой и вызывают поляризацию плазмы в сторону, противоположную электрич. полю волны Е. Поэтому диэлектрич. проницаемость ионосферы e < 1. Она уменьшается с уменьшением частоты: Учёт соударений электронов с атомамии ионами даёт более точные ф-лы для e и s ионосферы:


Здесь v - эфф. частота соударений. Для декаметровых и более коротких волн в большей части ионосферы и показатели преломления h и поглощения приближённо равны:

Поскольку h < 1, фазовая скорость Р. р. УФ = = с/п > с , групповая скорость u гр = с/n < с .

Поглощение в ионосфере пропорц. v, т. к. чем больше число столкновений, тем большая часть энергии, получаемой электроном из волн, переходит в тепло. Поэтому поглощение больше в ниж. областях ионосферы (слой D) , где v больше, т. к. выше плотность газа. С увеличением частоты поглощение уменьшается. Короткие волны испытывают слабое поглощение и распространяются на большие расстояния.

Рефракция радиоволн в ионосфере. В ионосфере распространяются только радиоволны с частотой w > w 0 . При w < w 0 показатель преломления становится чисто мнимым и эл--магн. поле экспоненциально убывает в глубь плазмы. Радиоволна с частотой w, падающая на ионосферу вертикально, отражается от уровня, на к-ром w = w 0 и n = 0. В ниж. части ионосферы электронная концентрация и w 0 увеличиваются с высотой, поэтому с увеличением w посланная с Земли волна всё глубже проникает в ионосферу. Макс. частота радиоволны, к-рая отражается от слоя ионосферы при вертикальном падении, наз. критич. частотой слоя:

Критич. частота слоя F 2 (гл. максимума) изменяется в течение суток и года в широких пределах (от 3-5 до 10 МГц). Для волн с показатель преломления не обращается в нуль и падающая вертикально волна проходит через ионосферу, не отражаясь.

При наклонном падении волны на ионосферу происходит рефракция, как в тропосфере. В ниж. части ионосферы gradM -1 , т. е. поэтому gradи траектория луча отклоняется по направлению к Земле (рис. 9). Радиоволна, падающая на ионосферу под углом f 0 , поворачивает к Земле на высоте h , для к-рой выполнено условие (5). Макс. частота волны, отражающейся от ионосферы при падении под углом (т. е. для данной дальности трассы), равнаи наз. максимально применимой частотой (МПЧ). Волны с отражаясь от ионосферы, возвращаются на Землю, что используется для дальней радиосвязи.


Рис. 9. Схематическое изображение радиолучей определённой частоты при различных углах падения на ионосферу.

Рис. 10. Распространение коротких волн между Землёй и ионосферой: а - много-скачковая траектория; б - скользящая траектория.


Вследствие сферичности Земли величина угла f 0 ограничена и дальность связи при однократном отражении от ионосферы3500-4000 км. Связь на большие расстояния осуществляется за счёт неск. последоват. отражений от ионосферы и Земли ("скачков", рис. 10,а ). Возможны и более сложные волноводные траектории, возникающие за счёт горизонтального градиента N или рассеяния на неоднородностях ионосферы при Р. р. с частотой w> w МПЧ. В результате рассеяния угол падения луча на слой F 2 оказывается больше, чем при обычном распространении. Луч испытывает ряд последоват. отражений от слоя F 2 , пока не попадёт в область с таким градиентом N , к-рый вызовет отражение части энергии назад к Земле (рис. 10, б) .

Влияние магнитного поля Земли Н 0 . В магн. поле Н 0 на электрон, движущийся со скоростью u , действует Лоренца сила под влиянием к-рой он вращается по окружности в плоскости, перпендикулярной Н 0 , с гиромагн. частотой w H . Траектория каждой заряж. частицы - винтовая линия с осью вдоль Н 0 . Действие силы Лоренца приводит к изменению характера вынужденных колебаний электронов под действием электрич. поля волны, а следовательно, к изменению электрич. свойств среды. В результате ионосфера становится анизотропной гиротропной средой, электрич. свойства к-рой зависят от направления Р. р. и описываются не скалярной величиной e, а тензором диэлект-рич. проницаемости . Падающая на такую среду волна испытывает двойное лучепреломление ,т. е. расщепляется на две волны, отличающиеся скоростью и направлением распространения, поглощением и поляризацией. Если направление Р. р.то падающую волну можно представить себе в виде суммы двух линейно поляризованных волн си. Для первой, "необыкновенной", волны (е )характер вынужденного движения электронов под действием поля волны Е изменяется (появляется компонента ускорения, перпендикулярная Е )и поэтому изменяется п . Для второй, "обыкновенной", волны (о ) вынужденное движение остаётся таким же, как и без поля Н 0 (присила Лоренца равна 0). Для этих двух волн (без учёта соударений) квадраты показателей преломления равны

При Р. р. вдоль

В последнем случае обе волны имеют круговую поляризацию, причём у "необыкновенной" волны вектор E вращается в сторону вращения электрона, а у "обыкновенной" - в противоположную сторону. При произвольном направлении Р. р. (относительно Н„) поляризация нормальных волн эллиптическая.

По мере Р. р. в ионосфере увеличивается сдвиг фаз между волнами и изменяется поляризация суммарной волны. Напр., при P.p. вдоль Н 0 это приводит к повороту плоскости поляризации (Фарадея эффект ),а при Р. р. перпендикулярно Н 0 - к периодич. чередованию линейной и круговой поляризаций (см. Коттона - Мутона эффект) , Т. к. показатели преломления волн различны, отражение их происходит на разной высоте (рис. 11). Направление k при Р. р. в ионосфере может отличаться от u гр.

Рис. 11 . Расщепление радиоволны в результате в ионосфере.


Низкочастотные волны в ионосфере. Осн. часть энергии НЧ-радиоволн практически не проникает в ионосферу. Волны отражаются от её ниж. границы (днём - вследствие сильной рефракции в D -слое, ночью - от E-слоя , как от границы двух сред с разными электрич. свойствами). Распространение этих волн хорошо описывается моделью, согласно к-рой однородные и изотропные Земля и ионосфера образуют приземный волновод с резкими сферич. стенками, в к-ром и происходит Р. р. Такая модель объясняет наблюдаемое убывание поля с расстоянием и возрастание амплитуды поля с высотой. Последнее связано со скольжением волн вдоль вогнутой поверхности волновода, приводящим к своеобразной "фокусировке" поля. Это явление аналогично открытому Рэлеем в акустике эффекту "шепчущей галереи". Амплитуда радиоволн значительно возрастает в антиподной по отношению к источнику точке Земли. Это объясняется сложением радиоволн, огибающих Землю по всем направлениям и сходящихся на противоположной стороне.

Влияние магн. поля Земли обусловливает ряд особенностей распространения НЧ-волн в ионосфере: сверхдлинные волны могут выходить из приземного волновода за пределы ионосферы, распространяясь вдоль силовых линий геомагн. поля между сопряжёнными точками А и В Земли (рис. 12). Из ф-лы (8) видно, что при в случае продольного распространения нигде не обращается в 0, т. е. волна проходит через ионосферу без отражения. В ночной атмосфере приближение геом. оптики нарушается и частичное прохождение есть при любом угле падения. Разряды молний · в атмосфере - естеств. источник НЧ-волн. В диапазоне 1-10 кГц они приводят к образованию т. н. свистящих атмосфериков ,к-рые распространяются указанным образом и создают на выходе приёмника сигнал с характерным свистом.


Рис. 12 .

При Р. р. инфразвуковых частот с w " W H важную роль играют колебания ионов, ионосфера ведёт себя как проводящая нейтральная жидкость, движение к-рой описывается ур-ниями магнитной гидродинамики . В ионосфере возможно распространение неск. типов маг-нитогидродинамич. волн, в частности альвеновских волн , распространяющихся вдоль геомагн. поля с характерной скоростью(где r - плотность газа), и магнитозвуковых волн, к-рые распространяются изотропно (подобно звуку).

Нелинейные эффекты при распространении радиоволн в ионосфере проявляются уже для радиволн сравнительно небольшой интенсивности и связаны с нарушением линейной зависимости поляризации среды от электрич. поля волны (см. Нелинейная оптика )."На-гревная" нелинейность играет осн. роль, когда характерные размеры возмущённой электрич. полем области плазмы во много раз больше длины свободного пробега электронов. Т. к. длина свободного пробега электронов в плазме значительна, электрон успевает получить от поля заметную энергию за время одного пробега. Передача энергии при столкновениях от электронов к ионам, атомам и молекулам затруднена из-за большого различия в их массах. В результате электроны плазмы сильно "разогреваются" уже в сравнительно слабом электрич. поле, что изменяет эфф. частоту соударений. Поэтому b и s плазмы становятся зависящими от поля Е волны и Р. р. приобретает нелинейный характер. "Возмущение" диэлектрич. проницаемости

Где - характерное "плазменное" поле, Т - темп-pa плазмы, d - ср. доля энергии, теряемая электроном при одном соударении с тяжёлой частицей, - частота соударений.

Т. о., нелинейные эффекты становятся заметными, когда поле волны E сравнимо с E p , к-рое в зависимости от частоты волны и области ионосферы составляет ~10 -4 -10 -1 В/см.

Нелинейные эффекты могут проявляться как самовоздействие волны и как взаимодействие волн между собой. Самовоздействие мощной волны приводит к изменению её поглощения и глубины модуляции. Поглощение мощной радиоволны нелинейно зависит от её амплитуды. Частота соударений v с увеличением темп-ры электронов может как расти (в ниж. слоях, где осн. роль играют соударения с нейтральными частицами), так и убывать (при соударении с ионами). В первом случае поглощение резко возрастает с увеличением мощности волны ("насыщение" поля в плазме). Во втором случае поглощение падает (т. и. просветление плазмы для мощной радиоволны). Из-за нелинейного изменения поглощения амплитуда волны нелинейно зависит от амплитуды падающего поля, поэтому её модуляция искажается (автомодуляция и демодуляция волны). Изменение h в поле мощной волны приводит к искажению траектории луча. При распространении узконаправленных пучков радиоволн это может привести к самофокусировке пучка аналогично самофокусировке света и к образованию волноводного канала в плазме.

Взаимодействие волн в условиях нелинейности приводит к нарушению суперпозиции принципа .В частности, если мощная волна с частотой w 1 модулирована по амплитуде, то благодаря изменению поглощения эта модуляция может передаться др. волне с частотой w 2 , проходящей в той же области ионосферы (рис. 13) Это явление, называемое кросс модуляцией или Люксембург-Горьковским эффектом , имеет практич. значение при радиовещании в диапазоне ср. волн.


Рис. 13 . Ионосферная кроссмодуляция происходит в области пересечения лучей.

Нагрев ионосферы в поле мощной волны в КВ-диапа-зоне может вызвать тепловую параметрич. неустойчивость в ионосфере, к-рая приводит к аномально большому поглощению радиоизлучения и расслоению плазмы (см. Параметрический резонанс) . В области образуются сильно вытянутые вдоль Н 0 неоднородности ионосферы (с продольным масштабом 1 км, поперечным - 0,5100 м), к-рые перспективны для дальней связи в диапазоне УКВ. В поле очень мощных радиоволн электроны столь сильно разогреваются, что возникает электрич. пробой газа.

Если размеры возмущённой полем волны области плазмы много меньше длины свободного пробега электронов, нагревная нелинейность становится слабой. Это имеет место при коротких импульсах и узких пучках радиоволн. В этом случае осн. роль играет т. н. стрикционная нелинейность, связанная с тем, что неоднородное перем. электрич. поле волны оказывает давление на электроны, вызывающее сжатие плазмы. Концентрация электронов N , а следовательно, e и s становятся зависящими от амплитуды поля. Стрикционная нелинейность приводит к изменению диэлектрич. проницаемости меньшей нагревного изменения на неск. порядков (при той же мощности волны). Стрикционная нелинейность играет важную роль в параметрич. неустойчивости ионосферы.

Распространение радиоволн в космических условиях. За исключением планет и их ближайших окрестностей, б. ч. вещества во Вселенной ионизована. Параметры космич. плазмы меняются в широких пределах. Напр., концентрация электронов и ионов вблизи орбиты Земли ~1-10 см -3 , в ионосфере Юпитера ~10 5 см -3 , в солнечной короне ~10 8 см -3 , в недрах звёзд~10 27 см -3 . Из космич. пространства к Земле приходит широкий спектр эл--магн. волн, к-рые на пути из космоса должны пройти через ионосферу и тропосферу. Через атмосферу Земли без заметного затухания распространяются волны двух осн. частотных диапазонов: "радиоокно" соответствует диапазону от ионосферных критич. частот w кr до частот сильного поглощения аэрозолями и газами атмосферы (10 МГц - 20 ГГц), "оптич. окно" охватывает диапазон видимого и ИК-излучения (1-10 3 ТГц). Атмосфера также частично прозрачна в диапазоне НЧ (<300 кГц), где распространяются свистящие атмосферики и магнитогидродинамич. волны.

В космич. условиях источник радиоволн и их приёмник часто быстро движутся один относительно другого. В результате Доплера эффекта это приводит к изменению w на , где u - относит. скорость. Понижение частоты при удалении корреспондентов (красное смещение )свойственно излучению удаляющихся от нас далёких галактик. Радиоволны в космич. плазме подвержены рефракции, связанной с неоднородностью среды (рис. 14). Напр., вследствие рефракции в атмосфере Земли источник радиоволн виден выше над горизонтом, чем в действительности. Для определения расстояния до пульсаров и при интерпретации результатов Солнца и планет необходимо учитывать, что в космич. плазме

Рис. 14. Траектории радиолучей с l = 5 м в солнечной короне.


Возможности радиосвязи с объектами, находящимися в космич. пространстве или на др. планетах, разнообразны и связаны с наличием и строением их атмосфер. Если космич. плазма находится в магн. поле (магнитосфера Юпитера, области солнечных пятен, магнитосферы пульсаров), то она является гиротропной средой, подобно земной ионосфере. Для всех планет с атмосферами общая трудность радиосвязи состоит в том, что при входе космич. аппарата в плотные слои атмосферы вокруг него создаётся плотная плазменная оболочка, затрудняющая прохождение радиоволн. На планетах типа Меркурия и Луны, практически не имеющих атмосферы и ионосферы, на Р. р. оказывает влияние только поверхность планеты. Из-за отсутствия отражения от ионосферы дальность связи вдоль поверхности такой планеты невелика (рис. 15) и может быть увеличена только при помощи ретрансляции через спутник.

Рис. 15. Зависимость дальности r радиосвязи на поверхности Луны от частоты w/2p.


Распространение радиоволн разных диапазонов. Радиоволны очень низких (3-30 кГц) и низких (30- 300 кГц) частот огибают земную поверхность вследствие волноводного распространения и дифракции, сравнительно слабо проникают в ионосферу и мало поглощаются ею. Отличаются высокой фазовой стабильностью и способностью равномерно покрывать большие площади, включая полярные районы. Это обусловливает возможность их использования для устойчивой дальней и сверхдальней радиосвязи и радионавигации, несмотря на высокий уровень атм. помех. Полоса частот от 150 до 300 кГц используется для радиовещания. Большое число геофиз. исследований выполняется путём наблюдений за сигналами естеств. происхождения, к-рые генерируются, напр., молниевыми разрядами и частицами радиац. поясов Земли. Трудности применения этого частотного диапазона обусловлены громоздкостью антенных систем с высоким уровнем атм. помех, с относит. ограниченностью скорости передачи информации.

Средние волны (300-3000 кГц) днём распространяются вдоль поверхности Земли (земная, или прямая, волна). Отражённая от ионосферы волна практически отсутствует, т. к. волны сильно поглощаются в D -слое ионосферы. Ночью из-за отсутствия солнечного излучения D -слой исчезает, появляется ионосферная волна, отражённая от E -слоя, и дальность приёма возрастает. Сложение прямой и отражённой волн влечёт за собой сильную изменчивость поля, поэтому ионосферная волна - источник помех для мн. служб, использующих распространение земной волны. Ср. волны применяются для радиовещания, радиотелеграфной и радиотелефонной связи, радионавигации.

Короткие волны (3-30 МГц) слабо поглощаются D - и Е -слоями и отражаются от F-слоя , когда их частотымпч. В результате их отражения от ионосферы возможна связь как на малых, так и на больших расстояниях при значительно меньшем уровне мощности передатчика и гораздо более простых антеннах, чем в более низкочастотных диапазонах. Этот диапазон применяется для радиотелефонной и радиотелеграфной связи, радиовещания, а также для радиолюбительской связи. Особенность радиосвязи в этом диапазоне - наличие замираний (фединга) сигнала из-за изменений условий отражения от ионосферы и интер-ференц. эффектов. КВ-линии связи подвержены влиянию атм. помех. Ионосферные бури вызывают прерывание связи.

Для очень высоких частот и УКВ (30 - 1000 МГц) преобладает Р. р. внутри тропосферы и проникновение сквозь ионосферу. Роль земной волны падает. Поля помех в НЧ-части этого диапазона всё ещё могут определяться отражениями от ионосферы, и до частоты 60 МГц ионосферное рассеяние продолжает играть значит. роль. Все виды Р. р., за исключением тропосферного рассеяния, позволяют передавать сигналы с шириной полосы частот в неск. МГц. В этой части спектра возможно очень высокое качество звукового радиовещания при дальности 50-100 км. Радиовещание с частотной модуляцией работает на частотах вблизи 100 МГц.

В этом же диапазоне частот ведётся телевиз. вещание. Для радиоастрономии выделено неск. узких спектральных полос, к-рые используют также для космич. связи, радиолокации, метеорологии, кроме того, для любительской связи.

Волны УВЧ и СВЧ (1000-10 000 МГц) распространяются в осн. в пределах прямой видимости и характеризуются низким уровнем шумов. В этом диапазоне при Р. р. играют роль известные области макс. поглощения и частоты излучения хим. элементов (напр., линии водорода вблизи 1420 МГц). В этом диапазоне размещены многоканальные системы широкополосной связи для передачи телефонных и телевиз. сигналов. Высокая направленность антенн позволяет использовать низкий уровень мощности в радиорелейных системах, а тропосферное рассеяние обеспечивает дальность радиосвязи ~ 800 км. Этот диапазон применяют в радионавигац. и радиолокац. службах. Для радиоастрономич. наблюдений выделены полосы частот за атомарным водородом, радикалом ОН и континуальным излучением. В космич. радиосвязи полоса частот ~ 1000- 10 000 МГц - наиб. важная часть радиодиапазона.

Волны СВЧ (>10 ГГц) распространяются только в пределах прямой видимости. Потери в этом диапазоне неск. выше, чем на более низких частотах, причём на их величину сильно влияет кол-во осадков. Роет потерь на этих частотах частично компенсируется возрастанием эффективности антенных систем. СВЧ служат в радиолокации, радионавигации и метеорологии. На линиях связи между поверхностью Земли и космосом могут использоваться частоты < 20 ГГц. Для связи в космосе могут применяться значительно более высокие частоты. При этом отсутствуют взаимные помехи между космич. и некосмич. службами. Диапазон СВЧ важен также для радиоастрономии.

Лит.: Долуханов М. П., Распространение радиоволн, 4 изд., М., 1972; Бреховских Л. М., Волны в слоистых средах, 2 изд., М., 1973; Гинзбург В. Л., Распространение электромагнитных волн в плазме, 2 изд., М., 1967; Татарский В. И., Распространение волн в турбулентной атмосфере, М., 1967; Fок В. А., Проблемы дифракции и распространения электромагнитных волн, М., 1970; Гуревич А. В., Шварцбург А. Б., Нелинейная теория распространения радиоволн в ионосфере, М., 1973; Железняков В. В., Электромагнитные волны в космической плазме, М., 1977.

П. А. Беспалов, М. Б, Виноградова .

Думаю все крутили ручку радиоприемника, переключая между «УКВ», «ДВ», «СВ» и слышали шипение из динамиков.
Но кроме расшифровки сокращений, не все понимают, что скрывается за этими буквами.
Давайте ближе познакомимся с теорией радиоволн.

Радиоволна

Длина волны(λ) - это расстояние между соседними гребнями волны.
Амплитуда(а) - максимальное отклонения от среднего значения при колебательном движении.
Период(T) - время одного полного колебательного движения
Частота(v) - количество полных периодов в секунду

Существует формула, позволяющая определять длину волны по частоте:

Где: длина волны(м) равна отношению скорости света(км/ч) к частоте (кГц)

«УКВ», «ДВ», «СВ»
Сверхдлинные волны - v = 3-30 кГц (λ = 10-100 км).
Имеют свойство проникать вглубь толщи воды до 20 м и в связи с этим применяются для связи с подводными лодками, причем, лодке не обязательно всплывать на эту глубину, достаточно выкинуть радио буй до этого уровня.
Эти волны могут распространяться вплоть до огибания земли, расстояние между земной поверхностью и ионосферой, представляет для них «волновод», по которому они беспрепятственно распространяются.

Длинные волны (ДВ) v = 150-450 кГц (λ = 2000-670 м).


Этот тип радиоволны обладает свойством огибать препятствия, используется для связи на большие расстояния. Также обладает слабой проникающей способностью, так что если у вас нет выносной антенны, вам вряд ли удастся поймать какую-либо радиостанцию.

Средние волны (СВ) v = 500-1600 кГц (λ = 600-190 м).


Эти радиоволны хорошо отражаются от ионосферы, находящейся на расстоянии 100-450 км над поверхностью земли.Особенность этих волн в том, что в дневное время они поглощаются ионосферой и эффекта отражения не происходит. Этот эффект используется практически, для связи, обычно на несколько сотен километров в ночное время.

Короткие волны (КВ) v= 3-30 МГц (λ = 100-10 м).

Подобно средним волнам, хорошо отражаются от ионосферы, но в отличии от них, не зависимо от времени суток. Могут распространяться на большие расстояния(несколько тысяч км) за счет пере отражений от ионосферы и поверхности земли, такое распространение называют скачковым. Передатчиков большой мощности для этого не требуется.

Ультракороткие Волны (УКВ) v = 30 МГц - 300 МГц (λ = 10-1 м).


Эти волны могут огибать препятствия размером в несколько метров, а также имеют хорошую проникающую способность. За счет таких свойств, этот диапазон широко используется для радио трансляций. Недостатком является их сравнительно быстрое затухание при встрече с препятствиями.
Существует формула, которая позволяет рассчитать дальность связи в УКВ диапазоне:

Так к примеру при радиотрансляции с останкинской телебашни высотой 500 м на приемную антенну высотой 10 м, дальность связи при условии прямой видимости составит около 100 км.

Высокие частоты (ВЧ-сантиметровый диапазон) v = 300 МГц - 3 ГГц (λ = 1-0,1 м).
Не огибают препятствия и имеют хорошую проникающую способность. Используются в сетях сотовой связи и wi-fi сетях.
Еще одной интересной особенностью волн этого диапазона, является то, что молекулы воды, способны максимально поглощать их энергию и преобразовывать ее в тепловую. Этот эффект используется в микроволновых печах.
Как видите, wi-fi оборудование и микроволновые печи работают в одном диапазоне и могут воздействовать на воду, поэтому, спать в обнимку с wi-fi роутером, длительное время не стоит.

Крайне высокие частоты (КВЧ-миллиметровый диапазон) v = 3 ГГц - 30 ГГц (λ = 0,1-0,01 м).
Отражаются практически всеми препятствиями, свободно проникают через ионосферу. За счет своих свойств используются в космической связи.

AM - FM
Зачастую, приемные устройства имеют положения переключателей am-fm, что же это такое:

AM - амплитудная модуляция


Это изменение амплитуды несущей частоты под действием кодирующего колебания, к примеру голоса из микрофона.
АМ - первый вид модуляции придуманный человеком. Из недостатков, как и любой аналоговый вид модуляции, имеет низкую помехоустойчивость.

FM - частотная модуляция


Это изменение несущей частоты под воздействие кодирующего колебания.
Хотя, это тоже аналоговый вид модуляции, но он имеет более высокую помехоустойчивость чем АМ и поэтому широко применяется в звуковом сопровождении ТВ трансляций и УКВ вещании.

На самом деле у описанных видом модуляции есть подвиды, но их описание не входит в материал данной статьи.

Еще термины
Интерференция - в результате отражений волн от различных препятствий, волны складываются. В случае сложения в одинаковых фазах, амплитуда начальной волны может увеличиться, при сложении в противоположных фазах, амплитуда может уменьшиться вплоть до нуля.
Это явление более всего проявляется при приеме УКВ ЧМ и ТВ сигнала.


Поэтому, к примеру внутри помещения качество приема на комнатную антенну ТВ сильно «плавает».

Дифракция - явление, возникающее при встрече радиоволны с препятствиями, в результате чего, волна может менять амплитуду, фазу и направление.
Данное явление объясняет связь на КВ и СВ через ионосферу, когда волна отражается от различных неоднородностей и заряженных частиц и тем самым, меняет направление распространения.
Этим же явлением объясняется способность радиоволн распространяться без прямой видимости, огибая земную поверхность. Для этого длина волны должна быть соразмерна препятствию.

PS:
Надеюсь, информация описанная мной будет полезна и принесет некоторое понимание по данной теме.

Диэлектрическая проницаемость ионизированного газа меньше единицы и зависит от частоты колебаний. Среды, в которых скорость распространения радиоволн зависит от частоты, называются диспергирующими. В диспергирующих средах различают фазовую и групповую скорости распространения радиоволн. Скорость, характеризующая быстроту перемещения фронта волны, называется фазовой. Фазовая скорость определяется формулой (1.45) или (для сред, приближающихся по своим свойствам к диэлектрику) (1.55). Поэтому для ионизированного газа без учета потерь согласно выражению (4.8)

Следовательно, каждой частоте соответствует своя фазовая скорость, и эта скорость больше скорости света.

Для того чтобы передать сигнал, необходимо создать некоторое возмущение - начало передачи синусоидальных колебаний, обрыв или импульс, т. е. передать некоторую группу волн (рис. 4.8).

В недиспергирующей среде группа волн передается неискаженной. В диспергирующей среде каждая из частот спектра импульса передается со своей скоростью, и импульс в целом передается с другой скоростью. Для определения групповой скорости игр распространения волны в диспергирующей среде следует воспользоваться формулой, известной из курса "Электродинамика" :

После вычисления дифференциала знаменателя

уравнение (4.36) упрощается:

Из сопоставления формул (4.35) и (4.37) видна зависимость между фазовой и групповой скоростями распространения волны в ионизированном газе:

υ гр υ Ф = с 2 . (4.38)

Таким образом, в ионизированном газе сигнал распространяется со скоростью, меньшей скорости света.

В случае приближения рабочей частоты к собственной частоте ионизированного газа (ω → ω 0) групповая скорость уменьшается (υ гр → 0), а фазовая скорость резко возрастает (υ ф → ∞). В действительности благодаря потерям энергии волны в реальном ионизированном газе фазовая скорость достигает большой конечной величины.

Для передачи импульса необходимо передать некоторую полосу частот, ширина которой обратно пропорциональна длительности импульса. Каждая из групп гармоник импульса распространяется со своей групповой скоростью. Если импульс не очень короткий и спектр его не широк, то разница в групповых скоростях отдельных групп гармоник импульса невелика и можно считать, что весь импульс распространяется со скоростью, соответствующей групповой скорости несущей частоты. Короткие импульсы содержат широкий спектр частот и при прохождении через ионосферу искажаются. Характер искажений прямоугольного импульса изображен на рис. 4.9 .

Группа высоких гармоник распространяется с большой групповой скоростью и создает импульс - предвестник (см. рис. 4.9, часть а-b). Основная часть энергии - "тело" импульса (см. рис. 4.9, часть b-с) распространяется со скоростью, соответствующей несущей частоте. Группа низких гармоник распространяется с меньшей групповой скоростью и создает запаздывающий импульс (см. рис. 4.9, часть с-d), Сам импульс оказывается "размытым". Искажения сказываются сильно в том случае, когда импульс короткий, а несущая частота близка к собственной частоте ионизированного газа. При распространении через ионосферу искажения за счет дисперсии претерпевают импульсы длительностью в несколько микросекунд. Телеграфные импульсы большой длительности практически не искажаются благодаря дисперсии.

Радиочастотный диапазон и его использование для радиосвязи

2.1 Основы распространения радиоволн

Радиосвязь обеспечивает передачу информации на расстояние с помощью электромагнитных волн (радиоволн).

Радиоволны – это электромагнитные колебания, распространяющиеся в пространстве со скоростью света (300 000 км/сек). Кстати свет также относится к электромагнитным волнам, что и определяет их весьма схожие свойства (отражение, преломление, затухание и т. п.).

Радиоволны переносят через пространство энергию, излучаемую генератором электромагнитных колебаний. А рождаются они при изменении электрического поля, например, когда через проводник проходит переменный электрический ток или когда через пространство проскакивают искры, т.е. ряд быстро следующих друг за другом импульсов тока.

Рис. 2.1 Структура электромагнитной волны.

Электромагнитное излучение характеризуется частотой, длиной волны и мощностью переносимой энергии. Частота электромагнитных волн показывает, сколько раз в секунду изменяется в излучателе направление электрического тока и, следовательно, сколько раз в секунду изменяется в каждой точке пространства величина электрического и магнитного полей.

Измеряется частота в герцах (Гц) – единицах названных именем великого немецкого ученого Генриха Рудольфа Герца. 1Гц – это одно колебание в секунду, 1 МегаГерц (МГц) – миллион колебаний в секунду. Зная, что скорость движения электромагнитных волн равна скорости света, можно определить расстояние между точками пространства, где электрическое (или магнитное) поле находится в одинаковой фазе. Это расстояние называется длиной волны.

Длина волны (в метрах) рассчитывается по формуле:

, или примерно

где f – частота электромагнитного излучения в МГц.

Из формулы видно, что, например, частоте 1 МГц соответствует длина волны около 300 м. С увеличением частоты длина волны уменьшается, с уменьшением – увеличивается.

Электромагнитные волны свободно проходят через воздух или космическое пространство (вакуум). Но если на пути волны встречается металлический провод, антенна или любое другое проводящее тело, то они отдают ему свою энергию, вызывая тем самым в этом проводнике переменный электрический ток. Но не вся энергия волны поглощается проводником, часть ее отражается от поверхности. Кстати, на этом основано применение электромагнитных волн в радиолокации.

Еще одним полезным свойством электромагнитных волн (впрочем, как и всяких других волн) является их способность огибать тела на своем пути. Но это возможно лишь в том случае, когда размеры тела меньше, чем длина волны, или сравнимы с ней. Например, чтобы обнаружить самолет, длина радиоволны локатора должна быть меньше его геометрических размеров (менее 10м). Если же тело больше, чем длина волны, оно может отразить ее. Но может и не отразить – вспомните «Stealth».

Энергия, которую несут электромагнитные волны, зависит от мощности генератора (излучателя) и расстояния до него, т.е. поток энергии, приходящийся на единицу площади, прямо пропорционален мощности излучения и обратно пропорционален квадрату расстояния до излучателя. Это значит, что дальность связи зависит от мощности передатчика, но в гораздо большей степени от расстояния до него.

Например, поток энергии электромагнитного излучения Солнца на поверхность Земли достигает 1 киловатта на квадратный метр, а поток энергии средневолновой вещательной радиостанции – всего тысячные и даже миллионные доли ватта на квадратный метр.

2.2 Распределение спектра радиочастот

Радиоволны (радиочастоты), используемые в радиотехнике, занимают спектр от 10 000 м (30 кГц) до 0,1 мм (3 000 ГГц). Это только часть обширного спектра электромагнитных волн. За радиоволнами (по убывающей длине) следуют тепловые или инфракрасные лучи. После них идет узкий участок волн видимого света, далее – спектр ультрафиолетовых, рентгеновских и гамма лучей – все это электромагнитные колебания одной природы, отличающиеся только длиной волны и, следовательно, частотой.

Хотя весь спектр разбит на области, границы между ними намечены условно. Области следуют непрерывно одна за другой, переходят одна в другую, а в некоторых случаях перекрываются.

Но эти диапазоны весьма обширны и, в свою очередь, разбиты на участки, куда входят так называемые радиовещательные и телевизионные диапазоны, диапазоны для наземной и авиационной, космической и морской связи, для передачи данных и медицины, для радиолокации и радионавигации и т.д. Каждой радиослужбе выделен свой участок диапазона или фиксированные частоты. Реально для целей радиосвязи используются колебания в частотном диапазон от 10 кГц до 100 ГГц. Использование для связи того или иного интервала частот зависит от многих факторов, в частности от условий распространения радиоволн разных диапазонов, требуемой дальности связи, реализуемости величин мощностей передатчиков в выбранном интервале частот и др.

Международными соглашениями весь спектр радиоволн, применяемых в радиосвязи, разбит на диапазоны (табл. 1):

Таблица 1

№п.п. Наименование диапазона Границы диапазона
Волн Устарев-шие термины Частот Радиоволн Частот
1 ДКМГМВДекаМега Метровые Крайне низкие частоты (КНЧ) 100.000-10.000км 3-30 Гц
2 МГМВМегаметровые Сверхнизкие частоты (СНЧ) 10.000-1.000 км 30-3.000Гц
3 ГКММВГектакилометровые Инфранизкие частоты (ИНЧ) 1.000-100 км 0.3-3 кГц
4 МРМВМириаметровые СДВ Очень низкие частоты (ОНЧ) VLF 100-10 км 3-30кГц
5 КМВКилометровые ДВ Низкие частоты (НЧ) LF 10-1 км 30-300кГц
6 ГКМВГектаметровые СВ Средние частоты (СЧ) VF 1000-100м 0,3-3 МГц
7 ДКМВДекаметровые КВ Высокие частоты (ВЧ) HF 100-10м 3-30 МГц
8 МВМетровые УКВ Очень высокие частоты (ОВЧ) VHF 10-1м 30-300 МГц
9 ДЦМВДециметровые УКВ Ультравысокие частоты (УВЧ) UHF 10-1 дм 0.3-3 ГГц
10 СМВСантиметровые УКВ Сверхвысокие частоты (СВЧ) SHF 10-1 см 3-30 ГГц
11 ММВМиллиметровые УКВ Крайне высокие частоты (КВЧ) EHF 10-1 мм 30-300 ГГц
12 ДЦММВДецимилли-

метровые

Субмилли-

метровые

СУММВ Гипервысокие частоты (ГВЧ) 1-0,1 мм 0,3-3 ТГц
13 Световые < 0,1 мм > 3 ТГц

Рис. 2.2 Пример распределения спектра между различными службами.

Радиоволны излучаются через антенну в пространство и распространяются в виде энергии электромагнитного поля. И хотя природа радиоволн одинакова, их способность к распространению сильно зависит от длины волны.

Земля для радиоволн представляет проводник электричества (хотя и не очень хороший). Проходя над поверхностью земли, радиоволны постепенно ослабевают. Это связано с тем, что электромагнитные волны возбуждают в поверхности земли электротоки, на что и тратится часть энергии. Т.е. энергия поглощается землей, причем тем больше, чем короче длина волна (выше частота).

Кроме того, энергия волны ослабевает еще и потому, что излучение распространяется во все стороны пространства и, следовательно, чем дальше от передатчика находится приемник, тем меньшее количество энергии приходится на единицу площади и тем меньше ее попадает в антенну.

Передачи длинноволновых вещательных станций можно принимать на расстоянии до нескольких тысяч километров, причем уровень сигнала уменьшается плавно, без скачков. Средневолновые станции слышны в пределах тысячи километров. Что же касается коротких волн, то их энергия резко убывает по мере удаления от передатчика. Этим объясняется тот факт, что на заре развития радио для связи в основном применялись волны от 1 до 30 км. Волны короче 100 метров вообще считались непригодными для дальней связи.

Однако дальнейшие исследования коротких и ультракоротких волн показали, что они быстро затухают, когда идут у поверхности Земли. При направлении излучения вверх, короткие волны возвращаются обратно.

Еще в 1902году английский математик Оливер Хевисайд (Oliver Heaviside) и американский инженер-электрик Артур Эдвин Кеннелли (Arthur Edwin Kennelly) практически одновременно предсказали, что над Землей существует ионизированный слой воздуха – естественное зеркало, отражающее электромагнитные волны. Этот слой был назван ионосферой.

Ионосфера Земли должна была позволить увеличить дальность распространения радиоволн на расстояния, превышающие прямую видимость. Экспериментально это предположение было доказано в 1923 году. Радиочастотные импульсы передавались вертикально вверх и принимались вернувшиеся сигналы. Измерения времени между посылкой и приемом импульсов позволили определить высоту и количество слоев отражения.

2.3 Влияние атмосферы на распространение радиоволн

Характер распространения радиоволн зависит от длины волны, кривизны Земли, почвы, состава атмосферы, времени суток и года, состояния ионосферы, магнитного поля Земли, метеорологических условий.

Рассмотрим строение атмосферы, оказывающей существенное влияние на распространение радиоволн. В зависимости от времени суток и года изменяются содержание влаги и плотность воздуха.

Воздух, окружающий земную поверхность, образует атмосферу, высота которой составляет приблизительно 1000-2000 км. Состав земной атмосферы неоднороден.

Рис. 2.3 Строение атмосферы.

Слои атмосферы высотой примерно до 100-130 км по своему составу однородны. В этих слоях имеется воздух, содержащий (по объему) 78% азота и 21% кислорода. Нижний слой атмосферы толщиной 10-15 км (рис. 2.3) называется тропосферой . В этом слое имеются водяные пары, содержание которых резко колеблется с изменением метеорологических условий.

Тропосфера постепенно переходит в стратосферу . Границей считается высота, на которой прекращается падение температуры.

На высотах примерно от 60 км и выше над Землей под влиянием солнечных и космических лучей в атмосфере происходит ионизация воздуха: часть атомов распадается на свободные электроны и ионы . В верхних слоях атмосферы ионизация незначительна, так как газ очень разрежен (имеется небольшое число молекул в единице объема). По мере того как солнечные лучи проникают в более плотные слои атмосферы, степень ионизации увеличивается. С приближением к Земле энергия солнечных лучей падает, и степень ионизации опять уменьшается. Кроме того, в нижних слоях атмосферы вследствие большой плотности отрицательные заряды долго существовать не могут; происходит процесс восстановления нейтральных молекул.

Ионизация в разреженной атмосфере на высотах 60-80 км от Земли и выше сохраняется в течение длительного времени. На этих высотах атмосфера очень разрежена, плотность свободных электронов и ионов настолько низкая, что столкновение, а отсюда и восстановление нейтральных атомов происходит относительно редко.

Верхний слой атмосферы называется ионосферой. Ионизированный воздух оказывает существенное влияние на распространение радиоволн.

Днем образуется четыре регулярных слоя или максимума ионизации ‒ слои D , Е , F 1 и F 2 . Наибольшую ионизацию (наибольшее число свободных электронов в единице объема) имеет слой F 2 .

После захода Солнца ионизирующее излучение резко падает. Происходит восстановление нейтральных молекул и атомов, что приводит к уменьшению степени ионизации. Ночью полностью исчезают слои D и F 2 , ионизация слоя Е значительно уменьшается, а слой F 2 сохраняет ионизацию с некоторым ослаблением.

Рис. 2.4 Зависимость распространения радиоволн от частоты и времени суток.

Высота слоев ионосферы все время меняется в зависимости от интенсивности солнечных лучей. Днем высота ионизированных слоев меньше, ночью больше. Летом в наших широтах электронная концентрация ионизированных слоев больше, чем зимой (за исключением слоя F 2). Степень ионизации зависит также и от уровня солнечной активности, определяемой количеством пятен на Солнце. Период солнечной активности равен примерно 11 годам.

В полярных широтах наблюдаются нерегулярные процессы ионизации, связанные с так называемыми ионосферными возмущениями.

Имеется несколько путей, по которым радиоволна приходит к приемной антенне. Как уже отмечалось, радиоволны, распространяющиеся над поверхностью земли и огибающие ее вследствие явления дифракции, называются поверхностными или земными волнами (направление 1, рис. 2.5). Волны, распространяющиеся по направлениям 2 и 3, называются пространственными . Они делятся на ионосферные и тропосферные. Последние наблюдаются только в диапазоне УКВ. Ионосферными называются волны, отраженные или рассеянные ионосферой, тропосферными ‒ волны, отраженные или рассеянные неоднородными слоями или «зернами» тропосферы.

Рис. 2.5 Пути распространения радиоволн.

Поверхностная волна основанием своего фронта касается Земли, как показано на рис. 2.6. Эта волна при точечном источнике всегда имеет вертикальную поляризацию, так как горизонтальная составляющая волны поглощается Землей. При достаточном удалении от источника, выраженном в длинах волн, любой отрезок фронта волны является плоской волной.

Поверхность Земли поглощает часть энергии распространяющихся вдоль нее поверхностных волн, поскольку Земля имеет активное сопротивление.

Рис. 2.6 Распространение поверхностных волн.

Чем короче волна, т.е. чем больше частота, тем больший ток индуцируется в Земле и тем больше потери. Потери в Земле уменьшаются с увеличением проводимости почвы, так как волны проникают в Землю тем меньше, чем выше проводимость почвы. В Земле происходят и диэлектрические потери, которые также увеличиваются с укорочением волны.

Для частот выше 1 МГц поверхностная волна фактически сильно затухает из-за поглощения Землей и поэтому не используется, за исключением местной зоны действия. У телевизионных частот затухание настолько большое, что поверхностная волна может использоваться на расстояниях не больше 1-2 км от передатчика.

Связь на большие расстояния осуществляется главным образом пространственными волнами.

Чтобы получить преломление, т. е. возвращение волны на Землю, волна должна излучаться под определенным углом по отношению к земной поверхности. Наибольший угол излучения, при котором радиоволна данной частоты возвращается на землю, называется критическим углом для данного ионизированного слоя (рис. 2.7).

Рис. 2.7 Влияние угла излучения на прохождение пространственной волны.

Каждый ионизированный слой имеет свою критическую частоту и критический угол .

На рис. 2.7 показан луч, который легко преломляется слоем Е , так как луч входит под углом ниже критического угла этого слоя. Луч 3 проходит область Е , но возвращается на Землю слоем F 2 , потому что он входит под углом ниже критического угла слоя F 2 . Луч 4 также проходит слой Е . Он входит в слой F 2 при его критическом угле и возвращается на Землю. Луч 5 проходит обе области и теряется в пространстве.

Все лучи, изображенные на рис. 2.7, относятся к одной частоте. Если используется более низкая частота, требуются большие критические углы для обеих областей; наоборот, если частота увеличивается, обе области имеют меньшие критические углы. Если продолжать увеличивать частоту, то наступит момент, когда волна, распространяющаяся от передатчика параллельно Земле, будет превышать критический угол для любой области. Такое состояние получается на частоте около 30 МГц. Выше этой частоты связь пространственной волной становится ненадежной.

Итак, каждой критической частоте, соответствует свой критический угол, и, наоборот, каждому критическому углу соответствует своя критическая частота. Следовательно, любая пространственная волна, частота которой равна или ниже критической, будет на определенном удалении от передатчика возвращаться на Землю.

На рис. 2.7 луч 2 падает на слой Е при критическом угле. Обратите внимание, где отраженная волна падает на Землю (при превышении критического угла сигнал теряется); пространственная волна, дойдя до ионизированного слоя, отражается от него и возвращается на Землю на большом расстоянии от передатчика. На некотором расстоянии от передатчика, зависящем от мощности передатчика и длины волны, возможен прием поверхностной волны. От того места, где кончается прием поверхностной волны, начинается зона молчания и кончается она там, где появляется отраженная пространственная волна. Резкой границы зоны молчания не имеют.

Рис. 2.8 Зоны приема поверхностных и пространственных волн.

По мере возрастания частоты величина мертвой зоны увеличивается вследствие уменьшения критического угла. Для связи с корреспондентом на определенном расстоянии от передатчика в определенные время суток и времена года существует максимальная допустимая частота , которая может быть использована для связи пространственной волной. Каждая ионосферная область имеет свою максимальную допустимую частоту для связи.

Короткие и, тем более, ультракороткие волны в ионосфере теряют незначительную часть своей энергии. Чем выше частота, тем меньший путь проходят электроны при своих колебаниях, вследствие чего уменьшается число их столкновений с молекулами, т. е. уменьшаются потери энергии волны.

В более низких ионизированных слоях потери больше, так как повышенное давление свидетельствует о большей плотности газа, а при большей плотности газа вероятность столкновения частиц возрастает.

Длинные волны отражаются от нижних слоев ионосферы, имеющих наименьшую концентрацию электронов, при любых углах возвышения, в том числе и близких к 90°. Почва средней влажности является почти проводником для длинных волн, поэтому они хорошо отражаются от Земли. Многократным отражением от ионосферы и Земли объясняется дальнее распространение длинных волн.

Распространение длинных волн не зависит от времени года и метеорологических условий, от периода солнечной активности и от ионосферных возмущений. При отражении от ионосферы длинные волны претерпевают большое поглощение. Вот почему для связи на большие расстояния необходимо иметь передатчики большой мощности.

Средние волны заметно поглощаются в ионосфере и почве плохой и средней проводимости. Днем наблюдается только поверхностная волна, так как пространственная волна (длиннее 300 м) практически полностью поглощается в ионосфере. Для полного внутреннего отражения средние волны должны пройти некоторый путь в нижних слоях ионосферы, имеющих хотя и невысокую концентрацию электронов, но зато значительную плотность воздуха.

Ночью с исчезновением слоя D поглощение в ионосфере уменьшается, вследствие чего на пространственных волнах можно поддерживать связь на расстояниях 1500-2000 км при мощности передатчика около 1 кВт. Условия связи зимой несколько лучше, чем летом.

Достоинством средних волн является то, что они не подвержены влиянию ионосферных возмущений.

Согласно международному соглашению на волнах длиной около 600 м передаются сигналы бедствия (сигналы SOS).

Положительной стороной связи пространственной волной на коротких и средних волнах является возможность осуществления дальней связи при небольшой мощности передатчика. Но связь пространственными волнами имеет и существенные недостатки.

Во-первых , неустойчивость связи вследствие изменения высоты ионизированных слоев атмосферы в течение суток и года. Для поддержания связи с одним и тем же пунктом за сутки приходится 2-3 раза менять длину волны. Часто вследствие изменения состояния атмосферы связь на некоторое время нарушается совсем.

Во-вторых , наличие зоны молчания.

Волны короче 25 м относятся к «дневным волнам», так как они хорошо распространяются днем. К «ночным волнам» относятся волны длиннее 40 м. Эти волны хорошо распространяются ночью.

Условия распространения коротких радиоволн определяются состоянием ионизированного слоя Fг. Электронная концентрация этого слоя часто нарушается вследствие неравномерности солнечного излучения, вызывающей ионосферные возмущения и магнитные бури. В результате энергия коротких радиоволн значительно поглощается, что ухудшает радиосвязь, даже иногда делает ее совсем невозможной. Особенно часто ионосферные возмущения наблюдаются на широтах, близких к полюсам. Поэтому там коротковолновая связь ненадежна.

Наиболее заметные ионосферные возмущения имеют свою периодичность: они повторяются через 27 суток (время обращения Солнца вокруг своей оси).

В диапазоне коротких волн сильно сказывается влияние промышленных, атмосферных и взаимных помех.

Оптимальные частоты связи на коротких волнах выбираются на основе радиопрогнозов, которые делятся на долгосрочные и краткосрочные . В долгосрочных прогнозах указывается ожидаемое среднее состояние ионосферы в течение определенного отрезка времени (месяца, сезона, года и более), тогда как краткосрочные прогнозы составляются на сутки, пятидневку и характеризуют возможные отклонения ионосферы от ее среднего состояния. Прогнозы составляются в виде графиков в результате обработки систематических наблюдений за ионосферой, солнечной активностью и состоянием земного магнетизма.

Ультракороткие волны (УКВ) от ионосферы не отражаются, они свободно проходят ее, т. е. эти волны не имеют пространственной ионосферной волны. Поверхностная же ультракороткая волна, на которой возможна радиосвязь, имеет два существенных недостатка: во-первых, поверхностная волна не огибает земную поверхность и большие препятствия и, во-вторых, она сильно поглощается в почве.

Ультракороткие волны широко применяются там, где требуется небольшой радиус действия радиостанции (связь ограничивается обычно пределами прямой видимости). В этом случае связь ведется пространственной тропосферной волной. Она обычно состоит из двух составляющих: прямого луча и луча, отраженного от Земли (рис. 2.9).

Рис. 2.9 Прямой и отраженный лучи пространственной волны.

Если антенны расположены достаточно близко, оба луча обычно достигают приемной антенны, но интенсивность их различная. Луч, отраженный от Земли, слабее из-за потерь, происходящих во время отражения от Земли. Прямой луч имеет почти то же самое затухание, что и волна в свободном пространстве. В приемной антенне общий сигнал равен векторной сумме этих двух составляющих.

Приемная и передающая антенны имеют обычно одну и ту же высоту, так что длина пути отраженного луча немного отличается от прямого луча. Отраженная волна имеет сдвиг по фазе на 180°. Таким образом, пренебрегая потерями в Земле во время отражения, если два луча прошли одно и то же расстояние, векторная сумма их равна нулю, в результате в приемной антенне сигнала не будет.

В действительности отраженный луч проходит несколько большее расстояние, следовательно, разность фаз в приемной антенне будет около 180°. Разность фаз определяется разностью пути в отношениях длины волны, а не в линейных единицах. Другими словами, общий сигнал, принимаемый при этих условиях, зависит главным образом от используемой частоты. Например, если длина рабочей волны 360 м, а разность пути 2 м, сдвиг фазы будет отличаться от 180° только на 2°. В результате наблюдается почти полное отсутствие сигнала в приемной антенне. Если длина волны 4 м, та же самая разность пути 2 м будет вызывать разность фазы 180°, полностью компенсируя сдвиг фазы 180° при отражении. В этом случае сигнал удваивается по напряжению.

Из этого вытекает, что при низких частотах использование пространственных волн не представляет интереса для связи. Только на высоких частотах, где разность пути является соизмеримой с используемой длиной волны, пространственная волна широко используется.

Радиус действия передатчиков УКВ значительно увеличивается при связи самолетов в воздухе и с Землей.

К преимуществам УКВ следует отнести возможность применения небольших антенн. Кроме того, в диапазоне УКВ может одновременно работать большое число радиостанций без взаимных помех. На участке диапазона волн от 10 до 1 м можно разместить одновременно работающих станций больше, чем в диапазоне коротких, средних и длинных волн вместе взятых.

Широкое распространение получили ретрансляционные линии, работающие на УКВ. Между двумя пунктами связи, находящимися на большом расстоянии, устанавливается несколько УКВ приемопередатчиков, расположенных в пределах прямой видимости один от другого. Промежуточные станции работают автоматически. Организация ретрансляционных линий позволяет повысить дальность связи на УКВ и осуществить, многоканальную связь (вести одновременно несколько телефонных и телеграфных передач).

Сейчас уделяется большое внимание использованию УКВ диапазона для дальней радиосвязи.

Наибольшее применение получили линии связи, работающие в диапазоне 20-80 МГц и использующие явления ионосферного рассеяния. Считалось, что радиосвязь через ионосферу возможна лишь на частотах ниже 30 МГц (длина волны более 10 м), а так как этот диапазон полностью загружен и дальнейшее увеличение числа каналов в нем невозможно, вполне понятен интерес к рассеянному распространению радиоволн.

Это явление заключается в том, что некоторая часть энергии излучения сверхвысоких частот рассеивается имеющимися в ионосфере неоднородностями. Создаются эти неоднородности воздушными течениями слоев с различными температурой и влажностью, блуждающими заряженными частицами, продуктами ионизации хвостов метеоритов и другими еще малоизученными источниками. Поскольку тропосфера всегда неоднородна, рассеянное преломление радиоволн существует систематически.

Рассеянное распространение радиоволн подобно рассеянию света прожектора в темную ночь. Чем мощнее световой луч, тем больше он дает рассеянного света.

При изучении дальнего распространения ультракоротких волн было замечено явление резкого кратковременного повышения слышимости сигналов. Такие всплески случайного характера длятся от нескольких миллисекунд до нескольких секунд. Однако практически они наблюдаются в течение суток с перерывами, редко превышающими несколько секунд. Появление моментов повышенной слышимости объясняется главным образом отражением радиоволн от ионизированных слоев метеоритов, сгорающих на высоте около 100 км. Диаметр этих метеоритов не превышает нескольких миллиметров, а их следы тянутся на несколько километров.

От метеоритных следов хорошо отражаются радиоволны частотой 50-30 МГц (6-10 м).

Ежедневно в земную атмосферу влетает несколько миллиардов таких метеоритов, оставляя за собой ионизированные следы с высокой плотностью ионизации воздуха. Это и дает возможность получить надежную работу радиолиний большой протяженности при использовании передатчиков относительно небольшой мощности. Неотъемлемой частью станций на таких линиях является вспомогательное буквопечатающее оборудование, снабженное элементом памяти.

Поскольку каждый метеоритный след существует всего несколько секунд, передача ведется автоматически короткими сериями.

В настоящее время широко используются связь и телевизионные передачи через искусственные спутники Земли.

Таким образом, по механизму распространения радиоволн линии радиосвязи можно классифицировать на линии, использующие:

процесс распространения радиоволн вдоль земной поверхности с огибанием ее (так называемые земные или поверхностные волны);

процесс распространения радиоволн в пределах прямой видимости (прямые волны);

отражение радиоволн от ионосферы (ионосферные волны);

процесс распространения радиоволн в тропосфере (тропосферные волны);

отражение радиоволн от метеорных следов;

отражение или ретрансляцию от искусственных спутников Земли;

отражение от искусственно создаваемых образований газовой плазмы или искусственно созданных проводящих поверхностей.

2.4 Особенности распространения радиоволн различных диапазонов

На условия распространения радиоволн в пространстве между передатчиком и радиоприемником корреспондентов оказывает влияние конечная проводимость земной поверхности и свойства среды над Землей. Это влияние для различных диапазонов волн (частот) различно.

Мириаметровые и километровые волны (СДВ и ДВ ) могут распространяться и как земные, и как ионосферные. Наличие земной волны, распространяющейся на сотни и даже тысячи километров, объясняется тем, что напряженность поля этих волн убывает с расстоянием довольно медленно, так как поглощение их энергии земной или водной поверхностью невелико. Чем длиннее волна и лучше проводимость почвы, тем на большие расстояния обеспечивается радиосвязь.

В большой степени поглощают электромагнитную энергию песчаные сухие почвы и горные породы. При распространении за счет явления дифракции они огибают выпуклую земную поверхность, встречающиеся на пути препятствия: леса, горы, возвышенности и т.д. Начиная с расстояния 300-400 км от передатчика, появляется ионосферная волна, отраженная от нижней области ионосферы (от слоя D или Е). Днем из-за наличия слоя D поглощение электромагнитной энергии становится более существенным. Ночью, с исчезновением этого слоя, дальность связи увеличивается. Таким образом, прохождение длинных волн ночью, как правило, лучше, чем днем. Глобальные связи на СДВ и ДВ осуществляются волнами, распространяющимися в сферическом волноводе, образованном ионосферой и земной поверхностью.

Преимущество СДВ-, ДВ- диапазона:

радиоволны СДВ- и ДВ-диапазона обладают свойством проникать в толщу воды, а также распространяться в некоторых структурах почвы;

за счет волн, распространяющихся в сферическом волноводе Земли, обеспечивается связь на тысячи километров;

дальность связи мало зависит от ионосферных возмущений;

хорошие дифракционные свойства радиоволн этих диапазонов позволяют обеспечивать связь на сотни и даже тысячи километров земной волной;

постоянство параметров радиолинии обеспечивает стабильный уровень сигнала в точке приема.

Недостатки СДВ-,ДВ,- диапазона:

эффективное излучение волн рассматриваемых участков диапазона может достигаться лишь с помощью весьма громоздких антенных устройств, размеры которых соизмеримы с длиной волны. Строительство и восстановление антенных устройств таких размеров в ограниченное время (в военных целях) затруднительно;

поскольку размеры реально выполняемых антенн меньше длины волны, то компенсация пониженной их эффективности достигается увеличением мощности передатчиков до сотен и более кВт;

создание резонансных систем в этом диапазоне и при значительных мощностях определяет большие размеры выходных каскадов: передатчиков, сложность быстрой перестройки на другую частоту;

для электропитания радиостанций СДВ- и ДВ-диапазонов) требуются большие мощности электростанций;

существенным недостатком СДВ- и ДВ-диапазонов является их небольшая частотная емкость;

достаточно большой уровень промышленных и атмосферных помех;

зависимость уровня сигнала в точке приема от времени суток.

Область практического применения радиоволн СДВ-, ДВ -диапазона:

связь с подводными объектами;

связь по глобальным магистральным линиям и подземная связь;

радиомаяки, а также связь в дальней авиации и ВМФ.

Гектометровые волны (СВ) могут распространяться поверхностной и пространственной волнами. Причем дальность связи поверхностной волной у них меньше (не превышает 1000-1500 км), так как их энергия поглощается почвой больше, чем у длинных волн. Волны, достигающие ионосферы, интенсивно поглощаются слоем D , когда он существует, но хорошо отряжаются слоем Е.

У средних волн дальность связи очень зависит от времени суток. Днем средние волны так сильно поглощаются в нижних слоях ионосферы, что пространственная волна практически отсутствует. Ночью слой D и нижняя часть слоя Е исчезают, поэтому поглощение средних волн уменьшается; и пространственные волны начинают играть главную роль. Таким образом важной особенностью средних волн является то, что днем связь на них поддерживается поверхностной волной, а ночью ‒ как поверхностной так и пространственной волнами одновременно.

Преимущества СВ-диапазона:

в ночное время летом и в течение большей части суток зимой дальность связи, обеспечиваемая ионосферной волной, достигает тысячи километров;

средневолновые антенные устройства оказываются достаточно эффективными и имеют приемлемые габариты даже для мобильных средств радиосвязи;

частотная емкость этого диапазона больше, чем СДВ- и ДВ-диапазонов;

хорошие дифракционные свойства радиоволн этого диапазона;

мощности передатчиков меньше, чем СДВ- и ДВ-диапазонов;

малая зависимость от ионосферных возмущений и магнитных бурь.

Недостатки СВ-диапазона:

загруженность СВ-диапазона мощными радиовещательными радиостанциями создает затруднения в широком использовании;

ограниченная частотная емкость диапазона затрудняет маневр частотами;

дальность связи на СВ в дневное время летом всегда ограничена, так как она возможна лишь земной волной;

достаточно большие мощности передатчиков;

затруднительно применение высокоэффективных антенных устройств, сложность построения и восстановление в короткие сроки;

достаточно большой уровень взаимных и атмосферных помех.

Область практического применения paдиoвoлн СВ-диапазона; средневолновые радиостанции чаще всего применяются в арктических районах, как резервные в случаях потери широко используемой коротковолновой радиосвязи из-за ионосферных и магнитных возмущений, а также в дальней авиации и ВМФ.

Декаметровые волны (KB ) занимают особое положение. Они могут распространяться и как земные, и как ионосферные волны. Земные волны при относительно небольших мощностях передатчиков, свойственных мобильным радиостанциям, распространяются на расстояния, не превышающие нескольких десятков километров, так как они испытывают значительное поглощение в земле, увеличивающееся с ростом частоты.

Ионосферные волны за счет однократного или многократного отражения от ионосферы при благоприятных условиях могут распространяться на большие расстояния. Их основное свойство заключается в том, что они слабо поглощаются нижними областями ионосферы (слоями D и Е ) и хорошо отражаются ее верхними областями (главным образом слоем F 2 . находящимся на высоте 300-500 км над землей). Это дает возможность использовать относительно маломощные радиостанции для ведения прямой связи в неограниченно широком диапазоне расстояний.

Существенное снижение качества KB радиосвязи ионосферными волнами происходит из-за замирания сигналов. Природа замираний в основном сводится к интерференции нескольких приходящих к месту приема лучей, фаза которых вследствие изменения состояния ионосферы непрерывно меняется.

Причинами прихода нескольких лучей в место приема сигналов могут быть:

облучение ионосферы под углами, при которых лучи, претерпевающие

различное число отражений от ионосферы и Земли, сходятся в точке приема;

явление двойного лучепреломления под воздействием магнитного поля Земли, благодаря которому два луча (обыкновенный и необыкновенный), отражаясь от различных слоев ионосферы, достигают одной и той же точки приема;

неоднородность ионосферы, приводящая к диффузному отражению волн от различных ее областей, т.е. к отражению пучков множества элементарных лучей.

Замирания могут происходить также в силу поляризационных флуктуаций волн при отражении от ионосферы, приводящих к изменению соотношения вертикальных и горизонтальных составляющих электрического поля в месте приема. Поляризационные замирания наблюдаются гораздо реже интерференционных и составляют 10-15 % общего их числа.

Уровень сигнала в точках приема в результате замираний может изменяться в широких пределах ‒ в десятки и даже сотни раз. Промежуток времени между глубокими замираниями является случайной величиной и может меняться от десятых долей секунды до нескольких секунд, а иногда и более, причем переход от высокого к низкому уровню может проходить как плавно, так и весьма резко. Быстрые изменения уровня часто накладываются на медленные.

Условия прохождения коротких волн через ионосферу меняются от года к году, что связано с почти периодическим изменением солнечной активности, т.е. с изменением числа и площади солнечных пятен (числа Вольфа), которые являются источниками радиации, ионизирующей атмосферу. Период повторения максимальной солнечной активности составляет 11,3±4 года. В годы максимальной солнечной активности максимально применимые частоты (МПЧ) повышаются, а области рабочих диапазонов частот расширяются.

На рис. 2.10 показано типовое семейство суточных графиков МПЧ и наименьших применимых частот (НПЧ) для излучаемой мощности, равной 1 кВт.

Рис. 2.10 Ход кривых МПЧ и НПЧ.

Это семейство суточных графиков соответствует определенным географическим районам. Из него следует, что применимый диапазон частот для ведения связи на заданное расстояние может оказаться весьма небольшим. При этом необходимо учитывать, что ионосферные прогнозы могут иметь погрешность, поэтому при выборе максимальных частот связи стараются не превышать линию так называемой оптимальной рабочей частоты (ОРЧ), проходящей ниже линии МПЧ на 20-30 %. Разумеется, что рабочая ширина участка диапазона от этого дополнительно сокращается. Снижение уровня сигнала при приближении к максимально применимой частоте объясняется непостоянством параметров ионосферы.

В связи с тем, что состояние ионосферы изменяется, связь ионосферной волной требует правильного выбора частот в течение суток:

ДНЕМ используют частоты 12-30 МГц,

УТРОМ и ВЕЧЕРОМ 8-12 МГц, НОЧЬЮ 3-8 МГц.

Из графиков также видно, что с уменьшением протяженности линии радиосвязи участок применимых частот сокращается (для расстояний до 500 км в ночное время он может составлять всего лишь 1-2 МГц).

Условия радиосвязи для протяженных линий оказываются более благоприятными, чем для коротких, так как их меньше, а участок пригодных частот для них значительно шире.

Существенное влияние на состояние KB радиосвязи (особенно в полярных районах) могут иметь ионосферные и магнитные бури, т.е. возмущения ионосферы и магнитного поля Земли под воздействием потоков заряженных частиц, извергаемых Солнцем. Эти потоки часто разрушают основной отражающий ионосферный слой F2 в районе высоких геомагнитных широт. Магнитные бури могут проявляться не только в полярных областях, но и на всем земном шаре. Ионосферные возмущения обладают периодичностью и связаны со временем обращения Солнца вокруг своей оси, которое равно 27 суткам.

Для коротких волн характерно наличие зон молчания (мертвых зон). Зона молчания (рис. 2.8) возникает при радиосвязи на большие расстояния на участках, до которых поверхностная волна не доходит вследствие её затухания, а пространственная волна отражается от ионосферы на большее расстояние. Это происходит при использовании узконаправленных антенн при излучении под небольшими углами к горизонту.

Преимущества КВ-диапазона:

ионосферные волны могут распространяться на большие расстояния за счет однократного или многократного отражения от ионосферы при благоприятных условиях. Они слабо поглощаются нижними областями ионосферы (слоями D и Е) и хорошо отражаются верхними (главным образом, слоем F2);

возможность использовать относительно маломощные радиостанции для ведения прямой связи в неограниченно широком диапазоне расстояний;

частотная вместимость КВ-диапазона значительно больше, чем СДВ-, ДВ-, СВ-диапазонов, что обеспечивает возможность одновременной работы большого числа радиостанций;

антенные устройства, используемые в диапазоне декаметровых волн, имеют приемлемые (даже для установки на подвижных объектах) габариты и могут обладать явно выраженными направленными свойствами. Они имеют малое время развертывания, дешевы и легко восстанавливаются при повреждениях.

Недостатки КВ-диапазона:

радиосвязь ионосферными волнами может осуществляться, если применяемые частоты лежат ниже максимальных значений (МПЧ), определяемых для каждой протяженности линии радиосвязи степенью ионизации отражающих слоев;

связь возможна лишь в том случае, если мощности передатчиков и коэффициенты усиления применяемых антенн при имеющем место поглощении энергии в ионосфере обеспечивают необходимую напряженность электромагнитного поля в точке приема. Это условие ограничивает нижний предел применимых частот (НПЧ);

недостаточная частотная емкость для использования широкополосных режимов работы и маневра частотами;

огромное количество одновременно работающих радиостанций при большой дальности связи создает большой уровень взаимных помех;

большая дальность связи позволяет легко использовать противником преднамеренные помехи;

наличие зон молчания при обеспечении связи на большие расстояния;

существенное снижение качества KB радиосвязи ионосферными волнами из-за замирания сигналов, возникающих в силу непостоянства структуры отражающих слоев ионосферы, ее постоянного возмущения и многолучевого распространения волн.

Область практического применения радиоволн КВ-диапазона

KB радиостанции находят самое широкое практическое применение для связи удаленными абонентами.

Метровые волны (УКВ) включают в себя ряд участков частотного диапазона, обладающих огромной частотной емкостью.

Естественно, что эти участки в значительной степени отличаются один другого по свойствам распространения радиоволн. Энергия УКВ сильно поглощается Землей (в общем случае пропорционально квадрату частоты), поэтому земная волна довольно быстро затухает. Для УКВ несвойственно регулярное отражение от ионосферы, следовательно, связь рассчитывается на использование земной волны и волны, распространяющейся в свободном пространстве. Пространственные волны короче 6-7 м (43-50 МГц), как правило, проходят через ионосферу, не отражаясь от нее.

Распространение УКВ происходит прямолинейно, максимальная дальность ограничивается дальностью прямой видимости. Ее можно определить по формуле:

где Dmax – дальность прямой видимости, км;

h1 – высота передающей антенны, м;

h2 – высота приемной антенны, м.

Однако за счет рефракции (преломления) происходит искривление распространения радиоволн. В этом случае в формуле дальности более точным будет коэффициент не 3,57, а 4,1-4,5. Из этой формулы следует, что для увеличения дальности связи на УКВ необходимо выше поднимать антенны передатчика и приемника.

Увеличение мощности передатчика не ведет к пропорциональному увеличению дальности связи, поэтому в данном диапазоне находят применение маломощные радиостанции. При связи за счет тропосферного и ионосферного рассеяния требуются передатчики значительных мощностей.

На первый взгляд дальность связи земными волнами на УКВ должна быть весьма небольшой. Однако следует учитывать, что с ростом частоты повышается эффективность антенных устройств, за счет чего компенсируются энергетические потери в Земле.

Дальность связи земными волнами зависит от длины волн. Наибольшая дальность достигается на метровых волнах, особенно на волнах, примыкающих к КВ-диапазону.

Метровые волны обладают свойством дифракции , т.е. свойством огибать неровности рельефа местности. Увеличению дальности связи на метровых волнах способствует явление тропосферной рефракции , т.е. явление преломления в тропосфере, что и обеспечивает ведение связи на закрытых трассах.

В диапазоне метровых волн нередко наблюдается дальнее распространение радиоволн, что обусловлено рядом причин. Дальнее распространение может возникнуть при образовании спорадических ионизированных облаков (спорадического слоя Fs). Известно, что этот слой может появиться в любое время года и суток, однако для нашего полушария – преимущественно в конце весны и начале лета в дневное время. Особенностью этих облаков является весьма высокая ионная концентрация, достаточная иногда для отражения волн всего УКВ-диапазона. При этом зона расположения источников излучения относительно точек приема находится чаще всего на удалении 2000-2500 км, а иногда и ближе. Интенсивность сигналов, отраженных от слоя Fs, может быть очень большой даже при весьма небольших мощностях источников.

Другой причиной дальнего распространения метровых волн в годы максимума солнечной активности может быть регулярный слой F2. Это распространение проявляется в зимние месяцы в освещенное время точек отражения, т.е. тогда, когда поглощение энергии волн в нижних областях ионосферы минимально. Дальность связи при этом может достигать глобальных масштабов.

Дальнее распространение метровых волн может быть также при осуществлении высотных ядерных взрывов. В этом случае, кроме нижней области повышенной ионизации возникает верхняя (на уровне слоя Fs). Метровые волны проникают через нижнюю область, испытывая некоторое поглощение, отражаются от верхней и возвращаются на Землю. Расстояния, перекрываемые при этом, лежат в пределах от 100 до 2500 км. Напряженность поля отраженных волн зависит от частоты: наиболее низкие частоты претерпевают наибольшее поглощение в нижней области ионизации, а наиболее высокие испытывают неполное отражение от верхней области.

Граница раздела между KB и метровыми волнами проходит на длине волны 10 м (30 МГц). Свойства распространения радиоволн не могут изменяться скачком, т.е. должна существовать область или участок частот, который является переходным . Таким участком частотного диапазона является участок 20-30 МГц. В годы минимума солнечной активности (а также в ночное время независимо от фазы активности) эти частоты практически непригодны для дальней связи ионосферными волнами и их использование оказывается чрезвычайно ограниченным. В то же время при указанных условиях свойства распространения волн этого участка становятся весьма близкими к свойствам метровых волн. Не случайно этот участок частот применяется в интересах радиосвязи, ориентирующейся на метровые волны.

Преимущества УКВ-диапазона:

малые габариты антенн позволяют реализовать ярко выраженное направленное излучение, компенсирующее быстрое затухание энергии радиоволн;

условия распространения в основном не зависят от времени суток и годa, а также солнечной активности;

ограниченная дальность связи позволяет многократно использовать одни и те же частоты на участках поверхности, расстояние между границами которых не меньше суммы дальности действия радиостанций с одинаковыми частотами;

меньший уровень непреднамеренных (естественного и искусственного происхождения) и преднамеренных помех за счет узконаправленных антенн и ог раниченной дальности связи;

огромная частотная ёмкость, позволяющая использовать помехоустойчивые широкополосные сигналы для большого числа одновременно работающих станций;

при использовании для радиосвязи широкополосных сигналов достаточно частотной нестабильности радиолинии δf=10 -4 ;

способность УКВ проникать через ионосферу без существенных энергетических потерь сделала возможным осуществление космической радиосвязи на расстояния, измеряемые миллионами километров;

высокое качество радиоканала;

из-за весьма низких энергетических потерь в свободном пространстве дальность связи между летательными аппаратами, оборудованными относительно маломощными радиостанциями, может достигать нескольких сот километров;

свойство дальнего распространения метровых волн;

малая мощность передатчиков и небольшая зависимость дальности связи от мощности.

Недостатки УКВ-диапазона:

малая дальность радиосвязи земной волной, практически ограниченная прямой видимостью;

при использовании узконаправленных антенн затруднена работа с несколькими корреспондентами;

при использовании антенн с круговой направленностью уменьшается дальность связи, разведзащищенность, помехозащищенность.

Область практического применения радиоволн УКВ-дианазона Диапазон используется одновременно большим числом радиостанций, тем более что дальность взаимного мешания между ними, как правило, невелика. Свойства распространения земных волн обеспечивают широкое применение ультракоротких волн для связи в тактическом звене управления, в том числе между различного рода подвижными объектами. Связь на межпланетные расстояния.

Учитывая преимущества и недостатки каждого диапазона, можно сделать вывод, что наиболее приемлемыми диапазонами для работы радиостанциями малой мощности являются диапазоны декаметровых (KB) и метровых (УКВ) волн.

2.5 Влияние ядерных взрывов на состояние радиосвязи

При ядерных взрывах мгновенное гамма-излучение, взаимодействуя с атомами окружающей среды, создает поток быстрых электронов, летящих с большой скоростью преимущественно в радиальном направлении от центра взрыва, и положительных ионов, остающихся практически на месте. Таким образом, в пространстве на некоторое время происходит разделение положительных и отрицательных зарядов, что приводит к возникновению электрических и магнитных полей. Эти поля ввиду их кратковременности принято называть электромагнитным импульсом (ЭМИ ) ядерного взрыва. Продолжительность его существования примерно 150-200 миллисекунд.

Электромагнитный импульс (пятый поражающий фактор ядерного взрыва ) при отсутствии специальных мер защиты может повреждать аппаратуру управления и связи, нарушать работу электрических устройств, подключенных к протяженным наружным линиям.

Наиболее подвержены воздействию электромагнитного импульса ядерного взрыва системы связи, сигнализации и управления. В результате воздействия ЭМИ наземного или воздушного ядерного взрыва на антенны радиостанций в них наводится электрическое напряжение, под действием которого может происходить пробой изоляции, трансформаторов, плавление проводов, выход из строя разрядников, порча электронных ламп, полупроводниковых приборов, конденсаторов, сопротивлений и т. п.

Установлено, что при воздействии ЭМИ на аппаратуру наибольшее напряжение наводится на входных цепях, В отношении транзисторов наблюдается такая зависимость: чем выше коэффициент усиления транзистора, тем меньше его электрическая прочность.

Радиоаппаратура имеет электрическую прочность по постоянному напряжению не более 2-4 кВ. Учитывая, что электромагнитный импульс ядерного взрыва является кратковременным, предельную электрическую прочность аппаратуры без средств защиты можно считать более высокой ‒ примерно 8-10 кВ.

В табл. 1 приведены ориентировочные расстояния (в км), на которых в антеннах радиостанций в момент ядерного взрыва наводятся опасные для аппаратуры напряжения, превышающие 10 и 50 кВ.

Таблица 1

Hа бȍльших расстояниях воздействие ЭМИ оказывается аналогичным воздействию не очень далекого разряда молнии и не вызывает повреждения аппаратуры.

Воздействие электромагнитного импульса на радиоаппаратуру резко снижается в случае применения специальных мер защиты.

Наиболее аффективным способом зашиты радиоэлектронной аппаратуры, расположенной в сооружениях, является использование электропроводящих (металлических) экранов, которые в значительной мере снижают величины напряжений, наводимых на внутренних проводах и кабелях. Применяются средства защиты, аналогичные грозозащитным средствам: разрядники с дренажными и запирающими катушками, плавкие вставки, развязывающие устройства, схемы автоматического отключения аппаратуры от линии.

Хорошей защитной мерой является также надежное заземление аппаратуры в одной точке. Эффективно и выполнение радиотехнических устройств поблочно, с зашитой каждого блока и всего устройства в целом. Это дает возможность быстро сменить вышедший из строя блок резервным (в наиболее ответственной аппаратура проводится дублирование блоков с автоматическим переключением их при повреждении основных). В некоторых случаях дли защиты от ЭМИ можно использовать селеновые элементы и стабилизаторы.

Кроме того, могут быть применены защитные входные приспособления , которые представляют собой различные релейные или электронные устройства, реагирующие на превышение напряжения в цепи. При приходе импульса напряжения, наведенного в линии электромагнитным импульсом, они отключают питание от аппарата или просто разрывают рабочие цепи.

При выборе защитных устройств, следует учитывать, что воздействие ЭМИ характеризуется массовостью, то есть одновременным срабатыванием защитных средств во всех цепях, оказавшихся в районе взрыва. Поэтому применяемые схемы защиты должны автоматически восстанавливать работоспособность цепей немедленно после прекращения действия электромагнитного импульса.

Устойчивость аппаратуры к воздействию напряжения, возникающих в линиях при ядерном взрыве, в большой степени зависит от правильной эксплуатации линии и тщательного контроля исправности средств защиты.

К важным требованиям эксплуатации относится периодическая и своевременная проверка электрической прочности изоляции линии и входных цепей аппаратуры, своевременное выявление и устранение возникших заземлений проводов, контроль за исправностью разрядников, плавких вставок и т. п.

Высотный ядерный взрыв сопровождается образованием областей повышенной ионизации. При взрывах на высотах примерно до 20 км ионизированная область ограничивается сначала размерами светящейся области, а затем облаком взрыва. На высотах 20-60 км размеры ионизированной области несколько больше размеров облака взрыва, особенно у верхней границы этого диапазона высот.

При ядерных взрывах на больших высотах в атмосфере возникают две области повышенной ионизации.

Первая область образуется в районе взрыва за счет ионизированного вещества боеприпаса и ионизации воздуха ударной волной. Размеры этой области в горизонтальном направлении достигают десятков и сотен метров.

Вторая область повышенной ионизации возникает ниже центра взрыва в слоях атмосферы на высотах 60-90 км в результате поглощения воздухом проникающих излучений. Расстояния, на которых проникающие излучения производят ионизацию, в горизонтальном направлении составляют сотни и даже тысячи километров.

Области повышенной ионизации, возникающие при высотном ядерном взрыве, поглощают радиоволны и изменяют направление их распространения, что приводит к существенному нарушению работы радиосредств. При этом возникают перебои в радиосвязи, а в некоторых случаях она нарушается полностью.

Характер поражающего действия электромагнитного импульса высотных ядерных взрывов в основном аналогичен характеру поражающего действия ЭМИ наземных и воздушных взрывов.

Меры защиты от поражающего действия электромагнитного импульса высотных взрывов такие же, как и от ЭМИ наземных и воздушных взрывов.

2.5.1 Защита от ионизирующих и электромагнитных излучений

высотных ядерных взрывов (ВЯВ)

Помехи РС могут возникать вследствие взрывов ядерных боеприпасов, сопровождающихся излучением мощных электромагнитных импульсов малой длительности (10-8 сек) и изменением электрических свойств атмосферы.

ЭМИ (радиовспышка) возникает:

во-первых , в результате асимметричного расширения облака электрических разрядов, образующихся под воздействием ионизирующих излучений взрывов;

во-вторых , за счет быстрого расширения хорошо проводящего газа (плазмы), образующегося из продуктов взрыва.

После взрыва в космосе создается огненный шар, который представляет собой сильно ионизированную сферу. Эта сфера быстро расширяется (со скоростью порядка 100-120 км/ч) над земной поверхностью, преобразуясь в сферу ложной конфигурации, толщина сферы достигает 16-20 км. Концентрация электронов в сфере может доходить до 105-106 электр./см3, т. е. в 100-1000 раз превышать нормальную концентрацию электронов в ионосферном слое D .

Высотные ядерные взрывы (ВЯВ) на высотах больше 30 км существенным образом влияют на больших пространствах в течение продолжительного времени на электрические характеристики атмосферы, и, следовательно, оказывают сильное влияние на распространение радиоволн.

Кроме того, возникающий при ВЯВ мощный электромагнитный импульс индуцирует в проводных линиях связи большие напряжения (до 10 000-50 000 В) и токи до нескольких тысяч ампер.

Мощность ЭМИ настолько велика, что его энергии достаточно для проникновения в толщу земли до 30 м и наведения ЭДС в радиусе до 50-200 км от эпицентра взрыва.

Однако основное воздействие ВЯВ состоит в том, что выделившееся про взрыве огромное количество энергии, а также интенсивные потоки нейтронов, рентгеновских, ультрафиолетовых и гамма – лучей приводят к образованию в атмосфере сильно ионизированных областей и повышению плотности электронов в ионосфере, что в свою очередь, ведет к поглощению радиоволн и нарушению устойчивости функционирования системы управления.

2.5.2 Характерные признаки ВЯВ

ВЯВ в данном районе или вблизи него сопровождается мгновенным прекращением приема дальних станций в КВ диапазоне волн.

В момент прекращения связи в телефонах наблюдается короткий щелчок, а затем прослушиваются только собственные шумы приемника и слабые трески типа громовых разрядов.

Через несколько минут после прекращения связи на КВ резко возрастают помех от дальних станций в метровом диапазоне волн на УКВ.

Уменьшается дальность действия РЛС и точность измерения координат.

В основе защиты электронных средств лежит правильное использование частотного диапазона и всех факторов, которые возникают в результате применения ВЯВ

2.5.3 Основные определения:

отраженная радиоволна (отраженная волна ) – радиоволна, распространяющаяся после отражения от поверхности раздела двух сред или от неоднородностей среды;

прямая радиоволна (прямая волна ) – радиоволна, распространяющаяся непосредственно от источников к месту приема;

земная радиоволна (земная волна ) – радиоволна, распространяющаяся вблизи земной поверхности и включающая прямую волну, волну, отраженную от земли, и поверхностную волну;

ионосферная радиоволна (ионосферная волна ) – радиоволна, распространяющаяся в результате отражения от ионосферы или рассеяния на ней;

поглощение радиоволн (поглощение ) – уменьшение энергии радиоволны вследствие частичного перехода ее в тепловую энергию в результате взаимодействия со средой;

многолучевое распространение радиоволн (многолучевое распространение ) – распространение радиоволн от передающей к приемной антенне по нескольким траекториям;

действующая высота отражения слоя (действующая высота ) – гипотетическая высота отражения радиоволны от ионизированного слоя, зависящая от распределения электронной концентрации по высоте и длине радиоволны, определяемая через время между передачей и приемом отраженной ионосферной волны при вертикальном зондировании в предположении, что скорость распространения радиоволны на всем пути равна скорости света в вакууме;

ионосферный скачок (скачок ) – траектория распространения радиоволны одной точки на поверхности Земли к другой, прохождение по которой сопровождается одним отражением от ионосферы;

максимальная применимая частота (МПЧ ) – наивысшая частота радиоизлучения, на которой существует ионосферное распространение радиоволн между заданными пунктами в заданное время в определенных условиях, это частота, которая еще отражается от ионосферы;

оптимальная рабочая частота (ОРЧ ) – частота радиоизлучения ниже ПЧ, на которой может осуществляться устойчивая радиосвязь в определенных геофизических условиях. Как правило, ОРЧ ниже МПЧ на 15%;

вертикальное ионосферное зондирование (вертикальное зондирование ) – ионосферное зондирование при помощи радиосигналов, излучаемых вертикально вверх относительно поверхности Земли при условии, что точки излучения и приема совмещены;

ионосферное возмущение – нарушение в распределении ионизации в слоях атмосферы, которое превосходит обычно изменения средних характеристик ионизации для данных географических условий;

ионосферная буря – продолжительное ионосферное возмущение большой интенсивности.

Исторически сложилось так, что радиоволны открыли, когда световые явления были уже довольно хорошо изучены, и когда уже имелась теория Максвелла, которая описывала световые волны как упругие волны в эфире, распространявшиеся в нём с характеристической скоростью c . Когда обнаружилось, что скорость радиоволн совпадает с этой скоростью [Ф2], то на радостях решили, что свет и радиоволны имеют одну и ту же физическую природу, различаясь лишь по своим диапазонам частот. До сих пор в учебниках и справочниках фигурирует «шкала электромагнитных волн», которая охватывает все мыслимые частоты – от нуля до бесконечности. Такое положение дел тем более удивительно, что уже давно известны прямые указания на принципиально разную природу света и радиоволн.

Главное различие между ними в том, что свет – это квантовая передача энергии, а радиоволны – волновая. Заметьте, мы говорим о физической сути этих явлений, а не об их математическом описании. Математически – и свет, и радиоволны можно описать как в терминах волн, так и в терминах квантов: бумага всё стерпит. А физически – есть большая разница. При излучении, распространении и приёме радиоволны возможны подвижки заряженных частиц на частоте волны. Сколь долго работает генератор, непрерывно гоняющий заряды по излучающей антенне, столь же долго трепыхаются заряженные частицы в окружающем пространстве. В случае же со светом, никаких подвижек заряженных частиц на световой частоте – не бывает. Откуда им быть, если механизм передачи энергии совершенно другой? Кстати, даже электрон, со своей малой массой, не мог бы, будучи свободным, колебаться на световых частотах из-за своих инертных свойств. Поначалу полагали, что на такое способны электроны, связанные в атомах – например, согласно модели атома Дж.Дж.Томсона. Но от этой модели отказались в пользу модели Резерфорда-Бора… оформилась концепция фотонов… которые, согласно постановлению Первого Сольвеевского конгресса, излучаются и поглощаются атомами мгновенно . Отсюда следовало, что в атомах никаких колебаний заряженных частиц, задающих частоту фотона, не существует. Видите, к чему пришли сами ортодоксы: в случае радиоволн колебания заряженных частиц есть, а в случае света – нет. Но продолжали приписывать радиоволнам и свету одну и ту же физическую природу. Чтобы было загадочней!

А ведь эта разница между наличием или отсутствием колебаний заряженных частиц обусловлена не просто различием частотных диапазонов – в данном случае, это вопрос принципиальный [Г10]. Навигатор, работу которого мы обрисовали выше (3.4 ), обслуживает только квантовые перебросы энергии, а именно, перебросы квантов энергии возбуждения с атома на атом, но уж никак не с электрона на электрон. Потому что объект, способный приобрести и отдать энергию возбуждения, должен иметь соответствующую структурную организацию, которая обеспечивает внутреннюю степень свободы, допускающую саму возможность энергии возбуждения. А у свободного электрона, который является элементарной частицей, такой внутренней степени свободы нет. Поэтому электрон не может приобрести квант энергии возбуждения и, соответственно, не может отдать его.

Сказанного достаточно для осознания того, что свет и радиоволны – это принципиально различные физические феномены. К вопросу о природе радиоволн мы вернёмся ниже (5.3 ), а сейчас заметим следующее. При сравнении традиционных представлений о свете, как о летящих фотонах, и наших представлениях о нём, как о цепочке квантовых перебросов энергии возбуждения с атома на атом, бросается в глаза их принципиальное различие. В традиционном подходе свет, «выплюнутый» веществом, имеет самодостаточное, независимое от вещества существование: фотон, якобы, способен пролететь в межзвёздном пространстве длинные световые годы, пока не наткнётся на атом, который его поглотит. В нашем же подходе, света в отрыве от вещества не существует, т.к. световая энергия локализована только на атомах, и, при квантовых перебросах с одного атома на другой, она не движется по разделяющему атомы пространству. И вот, раз уж академики зачислили фотон в четвёрку фундаментальных, абсолютно стабильных частиц, то у академиков, в защиту представлений о независимом от вещества существовании фотонов, имеется трогательный мысленный эксперимент. Пусть, дескать, в десяти световых годах от нас сгенерировали мощную вспышку света, после чего излучатель сразу демонтировали… а приёмник мы еле успели построить к концу десятого года – но световой сигнал всё же приняли. Где же, дескать, находилась световая энергия все эти десять лет, когда излучателя уже не было, а приёмника ещё не было? Отвечаем: световая энергия перебрасывалась с атома на атом в межзвёздном пространстве, продвигаясь к строящемуся приёмнику. «Тогда, - торжественно восклицают академики, - предельная интенсивность пропускаемого света определялась бы концентрацией атомов, по которым он «перебрасывается»! Чем меньше была бы эта концентрация, тем хуже пропускался бы свет! А это не так: в лабораториях мы пропускаем сквозь сверхвысокий вакуум лазерные интенсивности!» Да, в лабораториях это получается. Но получается потому, что здесь объёмы со сверхвысоким вакуумом невелики: для атомов-отправителей, находящихся на входном окошке вакуумной камеры, Навигатор успешно находит атомов-получателей на её выходном окошке или на мишени внутри неё. Здесь «лазерная интенсивность» пропускается сквозь короткий участок со сверхвысоким вакуумом так, словно этого участка и нет вовсе. Но если участок со сверхвысоким вакуумом имел бы достаточно большую протяжённость, то всё происходило бы по-другому. Нам представляется логичным, что у Навигатора задан некоторый предельный радиус сканирования пространства в поисках атома-получателя. Если, по достижении этого предельного радиуса, атом-получатель не обнаруживается, то сканирование завершается (и, возможно, сразу же начинается его новый цикл). Тогда, при достаточно большой протяжённости участка пути света сквозь высокий вакуум, именно малая концентрация вещества должна служить ограничителем пропускной способности света этим участком.

И, в самом деле, имеются свидетельства о том, что на космических просторах всё происходит именно так. Почему, например, постоянна «солнечная постоянная», т.е. мощность солнечного излучения, приходящаяся на единичную площадку на радиусе орбиты Земли? Ведь даже в годы активного Солнца, при повышенном пятнообразовании и соответствующем увеличенном выходе энергии наружу, названная мощность, практически, не изменяется [С5]. Этот феномен стабилизации мощности излучения Солнца обычно пытаются объяснить каким-либо присущим Солнцу механизмом автоматического регулирования. Трудно поверить в такой механизм, глядя на видеосъёмки поверхности Солнца: эта поверхность бурлит и извергает чудовищные протуберанцы. Энергия так и рвётся наружу, но что-то её сдерживает. И нам представляется правдоподобной версия о том, что «поток электромагнитной энергии, приходящий от Солнца, стабилизируется ограниченными пропускными способностями сильно разреженной космической среды » [К5]. Будь концентрация атомов в межпланетном пространстве на порядок больше – Солнышко нас сожгло бы. Вот, смотрите: когда большая комета проходила между Солнцем и Землёй и достаточно сильно «газила», её хвост, направленный от Солнца, формировал створ с повышенной концентрацией вещества. Через этот створ Солнце припекало Землю сильнее, чем обычно, что вызывало всплеск климатических аномалий и стихийных бедствий. Похоже, что идущая из глубины веков слава о кометах, как о предвестниках несчастий и катаклизмов, основана не на суевериях, а на реальных причинно-следственных связях.

Но эта история – так сказать, дела давно минувших дней. А есть ли что-нибудь посовременнее, с переднего края науки и техники? А как же! Это – поучительная история о том, как позорно провалилась затея поражать лазерными лучами космические объекты. Ведь сделали образцы боевых газодинамических лазеров, которые прожигают броню и сшибают крылатые ракеты. Правда, это у них получается вблизи поверхности Земли, в условиях стандартной атмосферы. Если исходить из концепции летящих фотонов, то в космосе эти лазеры должны справляться с боевыми задачами ещё лучше. Ан нет. Это только в фильмах и компьютерных играх, фабрикуемых по тематике «звёздных войн», космические корабли в клочья разносятся лазерными лучами. А в реальности оказывается, что лазерный луч, который сквозь воздух прожигает броню, в космосе едва справляется со смехотворной задачей: выведением из строя светочувствительных элементов у спутника-шпиона. Помните, дорогой читатель, был период, когда в средствах массовой информации центральной темой была тема про Стратегическую оборонную инициативу США (СОИ)? Говорили-говорили про эту инициативу, а потом вдруг – раз! – и всё моментально стихло. А позже по центральному телевидению, в программе «Время», прошёл коротенький сюжет: на показательных испытаниях космического боевого лазера, попавший под его луч макет боеголовки и вправду разнесло в клочья – но это оттого, что бравые американские вояки предусмотрительно установили в нём взрывное устройство, и в нужный момент нажали на кнопочку. По-честному у них не получалось: что-то мешало боевым фотонам лететь в космическом вакууме так же лихо, как и вблизи поверхности Земли. Кстати, вопрос о том, почему боевые лазеры не оправдали надежд в космосе, поднимался на специализированных форумах в Интернете. И, знаете, такую постановку вопроса воспринимали серьёзно! Толпа адвокатов начинала отвечать на этот вопрос, изобретая причины получившейся неудачи. Вот, например, одна из их придумок: боеголовка в полёте, видите ли, вращается, поэтому лазерное пятно перемещается по её поверхности, вот лазер её и «не берёт». Ну, прямо незадача: склепали стратегический оборонный лазер, вывели его в космос… и всё рухнуло к чёртовой матери! Никто на переднем крае науки и техники не мог предвидеть, что боеголовка в полёте вращаться будет!